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Abstract – This paper proposes a new crossover operation
named asymmetric two-point crossover (ATC). We show how
deterministic crowding can be successful in the HIFF problem
and the M7 function with this new crossover. We also point out
that self-similarity in the solution plays an important role in the
success of ATC.

I. INTRODUCTION

The genetic algorithm (GA) is a probabilistic optimization
method widely used for solving various complicated search
problems [1][3].

Since GAs always maintain a population with finite size, in
some cases, GAs can magnify a small sampling error,
causing the problem of premature convergence [2][3].
Furthermore, although GAs with strong convergence can find
the fittest solution quickly, it is not always appropriate in that
it may cause GAs to converge to one region of the search
space, even when other regions also contain some good
solutions. In order to provide GAs with good ability in both
global optimization tasks and multimodal function
optimization tasks, the maintenance of diversity has been a
crucial issue.

One of the early studies that considered the maintenance of
population diversity was by De Jong in 1975 (cited in [4]).
He proposed a technique named “crowding factor model”.
However, because of the stochastic errors in the replacement
of population members, this kind of crowding is not very
successful at preserving population diversity. Mahfoud
presented an improved crowding scheme called deterministic
crowding, which virtually eliminates replacement errors [4].

Deterministic crowding (DC) was shown to be effective at
multimodal function optimization tasks [4][7]. It was also
used to solve the HIFF problem in which there is a need to
build complex modules while maintaining diversity in the
population [5][6][8]. But DC also has some limitations.
Because it tends to maintain individuals on each fitness peak,
if there are a large number of local optima in the fitness
landscape, DC may also get stuck on them, especially when
the population size is relatively small. Since DC without
mutation can be viewed as a kind of parallel, crossover hill-
climbing algorithm, it turns out that crossover largely
determines the performance of DC [7]. So, a question would
be: What kind of crossover is good for DC?

Watson and Pollack [8] compared the performance of
deterministic crowding using one-point, uniform and
disrespectful crossover operations on HIFF. From their
results, one-point crossover was shown to be the best.

In one-point crossover, the end biases would make the
formation of certain global optima more difficult than others
and two-point crossover does not possess any end biases. As
a result, using two-point crossover, the distribution among
global optima is much closer to uniform [7].

One of the problems of standard one-point and two-point
crossover operations is that they cannot create new genes in
positions of individual. If genes in some bits become fixed
due to the loss of genetic diversity, there is no force to regain
those genes (i.e., genes lost will be lost forever). On the other
hand, since the standard one or two-point crossover operation
only exchanges genes on the same positions between two
parents, if the two parents are very similar or even identical,
this kind of recombination will be of little value. In other
words, if the two parents selected are both from the same
region around a local optimum, it is often the case that their
offspring will be in the same region, performing local hill
climbing. This character can make GAs relatively stable but
will also waste search efficiency if those individuals are
located in a poor area.

In order to maintain the diversity in a population, one can
employ a large population but this would make the evolution
very time-consuming. Another way is to use mutation. Due to
its randomness, mutation is like a two-edged sword: It can
add variation at the cost of destroying good building blocks.

Since the influence of the bias of initial population and
other random factors cannot be easily diminished, it is
reasonable to consider a question: Can we design a crossover
operation that can force DC to explore other regions of a
search space even when most of the individuals are located at
the same region? In this paper, we propose a non-standard
two-point crossover, asymmetric two-point crossover (ATC).
Actually, it is an extension of standard two-point crossover.
The only difference is, in ATC, the crossover points may be
different in two parents. That is to say, this kind of crossover
can produce offspring through crossover of genes on different
parts of the two parents.

The remaining sections of this paper are organized as
follows: The next section introduces DC, the two main test
functions used in this paper and the asymmetric two-point
crossover algorithm. Section three presents some simulations
and results of DC on HIFF and M7 using ATC compared
with standard two-point crossover. Section four contains in-
depth analysis and additional simulations. Section five
introduces a variation of ATC (VATC) for HIFF. Section six
is the conclusion of simulation results and the relationship
between DC, ATC and self-similarity.
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II. METHODOLOGY

A. Asymmetric Two-Point Crossover (ATC)

ATC is defined as below:

1. Select two crossover points p1 and p2 in parent1.
2. Select a crossover point p3 in parent2.
3. Create offspring1: Replace genes between p1 and p2

in parent1 with those in parent2 starting from p3.
4. Create offspring2: Replace genes between p1 and p2

in parent2 with those between p1 and p2 in parent1.

For example:
p1 p2 p1 p2

Parent1 11110000 11001101
Parent2 11110000 00110010

p3 p3

Offspring1 11111111 11000101
Offspring2 11110000 01001010

Figure 1: Two examples of ATC

In Figure 1, bold bits in offspring1 are from parent2 and
italic bits in offspring2 are from parent1. We can see that
offspring2 is the same as that obtained by using standard two-
point crossover but offspring1 is different in that it can be
created by replacing genes in parent1 with genes in
asymmetric part of parent2. It is obviously that ATC can
produce many more kinds of offspring than can standard two-
point crossover. For example, in the first example, two
identical parents can produce one different offspring, which
is impossible in standard two-point crossover. Furthermore,
each individual is treated as a circle of genes and if the gene
sequence reaches the end of individual (e.g., the second
example), it will return back to the beginning.

B. Deterministic Crowding (DC)

Deterministic crowding works on the principle of restricted
competition. Any individual can be recombined with another
but each offspring is only able to replace the parent that it
most resembles. By doing so, individuals tend to compete
with other individuals that are around the same fitness peaks,
performing local hill climbing. This character is useful in
preventing premature convergence in that individuals are
allocated around different fitness peaks, exploring different
search space in parallel. Another advantage is that the
mechanism of elitism is inherently built in. As a contrast, due
to the bias of initial population and some random factors
during evolution, GAs without good genetic diversity
maintenance approaches often quickly converge to a local
optimum or cannot find and maintain all global optima
during evolution.

GA with standard DC works as below:

1. Initialize population randomly.
2. Randomly group individuals in pairs.
3. After recombination, two parents produce two

offspring.
4. According to pairing rule, each offspring is paired

with one parent.
5. If the offspring’s fitness is higher than that of its

corresponding parent, the parent gets replaced.
6. Go to step 2 until stop criteria are satisfied.

The distance measurement is the genotypic Hamming
distance. In standard two-point crossover, if one offspring is
most similar to one parent then the other offspring must be
most similar to a different parent. But in ATC, the two
offspring can be both similar to one parent. So, in this paper,
we changed the definition of DC as below:

Each offspring is to be paired with the parent to which it is
most similar. If the two parents are identical, each offspring
is paired with one parent. If the two offspring are both most
similar to one parent and their fitness are all higher than that
of the parent, the offspring that is more similar to the parent
wins (i.e., we want to keep the stability of GA).

C. Test Functions

The two main test functions used in this paper are the
HIFF problem [5][6][8] and the M7 function [7].

1) The HIFF problem:

1, if |B|=1,else
f (B)= |B|+f (BL)+f (BR), if(∀i{bi=0}or∀i{bi=1})

f (BL)+f (BR), otherwise
(1)

In equation 1, B is a block of bits, {b1, b2, … bn}, |B| is the
length of the block (n), bi is the ith element in block. BL and
BR are the left and right sub-strings respectively. The fitness
of a binary string is defined by the recursive function given
above. This function regards the string as a binary tree and
recursively decomposes it into left and right sub-strings. Each
sub-string is a building block in a certain level and if all the
bits in the sub-string are of the same value (i.e., all ones or all
zeros), it is rewarded as the best block in its level. The fitness
of the whole string is the sum of these fitness contributions of
all blocks at all level. In the HIFF problem, two different best
building blocks at one level can create a second best block at
the next level when they are combined together. For example,
the local optimum “11110000” can be viewed as the
combination of “1111” and “0000”, which are two global
optima in lower level and this local optimum is maximally
distant from two global optima (i.e., “11111111” and
“00000000”). This character of the HIFF problem makes it
difficult for GAs without good diversity maintenance
approaches.
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2) The M7 function:

f (x0,…,x29)=∑ ∑
= =

+

4

0

5

0
6 )(

i j
jixu ∀k, xk∈{0,1}

(2)

Function u (x) is specifically built to be deceptive [7]. In
our simulations, the values were set to be: 1.0, 0.0, 0.32, 0.64,
0.32, 0.0,1.0 for the integer x from 0 to 6 (see Figure 2). It
has two optima of value 1 when x=0 and x=6 as well as a
local optimum at x=3. As a result, M7 has 32 global optima
with value equal to 5 and millions of local optima.

Figure 2: The graph of function u (x). It has two global optima and one local
optimum and makes M7 a deceptive multimodal function.

III. SIMULATIONS AND RESULTS

In this section, we applied DC to HIFF and M7 with
different recombination approaches: standard two-point
crossover and ATC. The mutation rate was set to zero.

A. The HIFF problem

We first conducted some simulations on the 64-bit HIFF
problem. All results were averaged over 100 runs (300
generations per run). In Figures 3 and 4, the three categories
(from left to right) are the results with population size equal
to 100, 300, and 1000 respectively. In Figure 3, the four
columns in each category represent (from left to right) the
number of runs that find at least one global optimum using
ATC (ATC1), the number of runs that find at least one global
optimum using standard two-point crossover (TP1), the
number of runs that find both global optima using ATC
(ATC2) and the number of runs that find both global optima
using standard two-point crossover (TP2). In Figure 4, the
two columns in each category represent the total number of
individuals at global optima at the end of evolution (from left
to right: ATC, standard two-point crossover).

Figure 3: Comparison of the number of successful runs
(ATC vs. Standard two-point crossover)

Figure 4: Comparison of the number of individuals at global optima at the
end of evolution (TP: Standard two-point crossover)

With a small population, DC with standard two-point
crossover often gets stuck in local optima while DC with
ATC still has good global optimization ability. With the help
of ATC, DC is also more likely to find the two global optima
and can maintain more individuals on them meaning genetic
diversity maintained by ATC is better than that by standard
two-point crossover. Meanwhile, there is a tendency: The
bigger the population, the less the difference.

In order to fully investigate ATC’s potential, we also
conducted some simulations on the 256-bit HIFF problem,
each for 30 runs. For this difficult problem, both crossover
operations could only find at most one global optimum in one
run, even with a large population (e.g., 1000). DC with
standard two-point crossover often failed to find the global
optimum (only 4 runs out of 30 runs found a global
optimum). As a contrast, DC with ATC was still successful
with the same population size (i.e., in 30 runs, all runs found
one of the global optima). Furthermore, DC with ATC was
also capable of solving the 512-bit HIFF problem (i.e., in 30
runs, all runs found one of the global optima), which is very
hard for GAs with other standard diversity maintenance
approaches.
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B .The M7 function

We conducted several simulations on M7 with different
population sizes. Results were averaged over 100 runs (500
generations per run). Although both crossover operations
could maintain almost all individuals on global optima at the
end of evolution, there are still some differences in the
distribution of individuals and the number of global optima
maintained. To compare the distribution, we calculated the
variance of the data set composed of the number of
individuals on each optimum. In Figures 5 and 6, the two
categories (from left to right) are the results with population
size equal to 300 and 800 respectively. In each category, the
left column represents the result using ATC and the right
column represents that using standard two-point crossover.

Figure 5: Comparison of the number of global optima maintained

Figure 6: Comparison of distribution of individuals

It is obviously that ATC can find and maintain more global
optima during evolution and the distribution of individuals
among global optima is closer to uniform. Furthermore, the
difference is more distinct when the population size is small
than when the population size is big. That is, although it is
not a difficult task to find the global optima in M7, ATC still
outperforms standard two-point crossover by maintaining
better genetic diversity and thus prevents individuals from
converging to only some of the optima due to random factors.

IV. ANALYSIS AND DISCUSSION

In our simulations, we found that DC with ATC
outperformed DC with standard two-point crossover in HIFF
and M7. We also found that when the scale of problem was
relatively small (e.g., 64-bit HIFF) and the population size
was large (e.g., 1000 in HIFF and 800 in M7), the
performance difference was less distinct than that in other
situations. The reason is that by using a large population, DC
with standard two-point crossover is also capable of
maintaining enough genetic diversity, especially for small
scale HIFF and M7. So, from Figure 3 we can see that, with
population size equal to 1000, there is no distinct difference
between ATC and standard two-point crossover. Similarly, in
the M7 function, ATC can also find and maintain more
global optima than can standard two-point crossover when
the population size is small.

Now, it is reasonable to claim that ATC can maintain
better genetic diversity during evolution. But why does it
work? Given two specific crossover points, standard two-
point crossover is only capable of producing two offspring
while ATC is, in principle, capable of producing N+1
different offspring (N is the length of individual) because we
can have N different crossover points in another parent. This
advantage is especially important when many individuals are
clustered in a region that is far from global optima. By using
ATC, the two offspring produced may be quite different from
their parents meaning that these offspring may be located far
from the bad area in which their parents reside.

In fact, like standard two-point crossover, ATC also tries to
utilize the existing building blocks and create higher order
building blocks through recombination. The difference is that
ATC can use building blocks in any part of the individuals
and in fact the solutions of many problems have some kind of
self-similarity (i.e., a good building block in one part of the
solution may also be suitable when put in another part). In
other words, genes can be shared more efficiently in ATC.

In order to thoroughly investigate the influence of self-
similarity on ATC, we conducted additional simulations. The
two test functions were variations of the M7 function. In the
first test function F1, the values of u (x) were defined to be
0.8, 0.0, 0.32, 0.64, 0.32, 0.0,1.0 for integer x from 0 to 6
respectively. So, F1 is a single-optimum function with all
ones as its global optimum. Obviously, the solution of this
function has good self-similarity. The second test function F2
was defined similarly except that there were two internal
functions u1 (x) and u2 (x). The first function u1 (x) was the
same as u (x) but u2 (x) was the opposite of u (x) (i.e., the
values of u2 (x) were set to be 1.0, 0.0, 0.32, 0.64, 0.32, 0.0,
0.8 for integer x from 0 to 6 respectively). In F2, u1 (x) and
u2 (x) alternated (i.e., apply u1 (x) on the first six bits and
then u2 (x) on the next six bits etc.). The reason for doing so
is to decrease the level of self-similarity of the solution. Now
the optimum of F2 is six ones followed by six zeros followed
by another six ones and so on.

From our analysis made before, we can make several
conjectures as below:
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1. When the population size is small ATC will
outperform standard two-point crossover.

2. When the population size is big enough, both
crossover operations will work.

3. The performance of ATC will change dramatically
on two test functions because they have different
levels of self-similarity while standard two-point
crossover will remain at the same level.

The performance criterion was the number of generations
needed to find the global optimum. All results were averaged
over 200 runs (maximum 1000 generations per run).

Figure 7: Comparison of the number of generations needed to find global
optimum (population size=100)

Figure 8: Comparison of the number of generations needed to find global
optimum (population size=300)

In Figure 7, the left column is the performance of ATC on
F1 and the right column is the performance on F2 (standard
two-point crossover couldn’t always find the global optimum
within 1000 generations). Figure 7 shows that even with a
small population, ATC is still capable of maintaining enough
genetic diversity and finding the global optimum in each run
while standard two-point crossover may fail in some runs. At
the same time, ATC’s performance changed dramatically in
F1 and F2 showing that F2 is more difficult for ATC than F1.
In Figure 8, the left category is ATC and the right one is

standard two-point crossover. In each category, the left
column is the result on F1 and the right one is the result on
F2. With a big population (e.g., 300), standard two-point
crossover can find the global optimum successfully. Also, it
is obvious that the performance of standard two-point
crossover remained at the same level on two test functions
while ATC still changed greatly.

The reason is that ATC maintains genetic diversity at the
cost of adding many variations in the population. If the
population size is big enough, standard two-point crossover is
also capable of maintaining good diversity. In this situation,
the variation caused by ATC may be not necessary or even
harmful. In other words, since ATC always tries to find
building blocks on different parts of the individuals, if the
function (e.g., F2) has poor self-similarity, this kind of effort
will be of little value and waste a lot of search efficiency.

V. EXTENSION

A. A Variation of ATC: VATC

In the previous section, we demonstrated that the level of
self-similarity has a great influence on the performance of
ATC. Since HIFF has perfect self-similarity compared with
M7, it is straightforward to consider a question: Can we
further improve ATC’s performance on HIFF?

For example, in the 8-bit HIFF problem, ATC can produce
one global optimum through the recombination of two
identical local optima “00001111” and “00001111”. So, it is
reasonable to think whether we can modify ATC so that it
can produce both two global optima at one time. Actually,
this can be realized by simply exchanging genes between the
two crossover points in parent1 with genes starting from the
third crossover point in parent2 (see Figure 9).

Parent1 00001111 11111111 Offspring1

Parent2 00001111 00000000 Offspring2

Figure 9: An example of VATC

B. Simulations on 64-bit HIFF

Tables 1 and 2 are comparisons between ATC and VATC
on a 64-bit HIFF problem. Results were averaged over 100
runs (300 generations per run).

TABLE 1
COMPARISON OF ATC AND VATC (POPULATION SIZE=100)

Name A B C D

ATC 100 37 63 54
VATC 100 28 86 39
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TABLE 2
COMPARISON OF ATC AND VATC (POPULATION SIZE=300)

Name A B C D

ATC 100 64 196 48
VATC 100 64 256 37

Notes:

A: The number of runs finding at least one global optimum.
B: The number of runs finding both global optima.
C: The number of individuals maintained on global optima.
D: The number of generations needed to first find global optimum.

VATC can find global optima more quickly and maintain
more individuals on global optima. But when the population
size is small, VATC is less likely to find both global optima.
That is, VATC achieves a strong convergence at the cost of
losing some multimodal optimization ability. Furthermore,
VATC was still successful in the 2048-bit HIFF problem
meaning it is much less likely to get stuck than ATC due to
the better genetic diversity maintained.

VI. CONCLUSION

The major motivation of this paper was to investigate DC’s
performance under different situations, especially when there
are a large number of local optima in the fitness landscape.
What we tried to make clear is the kind of crossover
operation that is good for DC.

We first proposed a new crossover operation named ATC
and then demonstrated DC’s ability of successfully solving
the HIFF problem and the M7 function with ATC. The major
character of ATC is that it can thoroughly exploit the
building blocks in the current population and even local
competition of individuals in a bad area can still produce
some good individuals located far from their parents. By
doing so, ATC could be expected to be effective in genetic
diversity maintenance.

Through the comparison with the results obtained by using
standard two-point crossover, we found that ATC
outperformed standard two-point crossover in both test
functions. Because DC with standard two-point crossover
tends to maintain each fitness peak, when the population size
is small or the number of local optima is large, it is also
possible to get stuck. In our simulations, DC with standard
two-point crossover could only be successful in the 64-bit
HIFF problem. By contrast, DC with ATC was still
successful in the 512-bit HIFF problem. In the M7 function,
ATC could maintain more fitness peaks and produce a more
uniform distribution of individuals among global optima.

It is interesting to find that crossover operations in GAs do
not necessarily need to be symmetric. Through in-depth
analysis and further simulations, we pointed out that the
reason lies in the self-similarity of solutions and ATC is
successful in problems having good self-similarity in their
solutions. Furthermore, we proposed a variation of ATC,
VATC, which has much better global optimization ability.

Now, it is time to draw the conclusion. First, although DC
is a good diversity maintenance approach, sometimes it may
also make some mistakes in identifying search space, getting
stuck in local optima. Fortunately, some specifically designed
crossover operations such as ATC and VATC may be
helpful. Second, self-similarity in solutions should be taken
into account sufficiently. Goldberg [3] claimed that important
similarities among good individuals can help guide a search
but we found good self-similarity can also greatly improve
search efficiency. Certainly, it is not always the case but if
we can benefit from it, why not?
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