
On Building a Principled Framework for Evaluating and Testing
Evolutionary Algorithms: A Continuous Landscape Generator

Bo Yuan Marcus Gallagher

School of Information Technology and Electrical Engineering
The University of Queensland

QLD 4072, Australia
{boyuan, marcusg}@itee.uq.edu.au

Abstract - In this paper, we address some issues related
to evaluating and testing evolutionary algorithms. A
landscape generator based on Gaussian functions is
proposed for generating a variety of continuous
landscapes as fitness functions. Through some initial
experiments, we illustrate the usefulness of this
landscape generator in testing evolutionary algorithms.

1 Introduction

Evolutionary Algorithms (EAs) have been successful at
solving many challenging problems. Driven by their
success, much effort has been devoted to designing new
algorithms or improving existing algorithms. By contrast,
little work has been done to answer the question: How can
we effectively evaluate the performance of these
algorithms? EAs are commonly evaluated based on some
canonical test problems. But if an algorithm works well on
a set of test problems, it does not necessarily mean that it
will also perform well on other problems[1]. It is
insufficient to draw general conclusions according to
simulation results based on ad hoc test problems[2].

 The reason is that people often regard these test
problems as black-boxes and do not have very good
knowledge about their landscapes. It is very likely that
they are not representative of the classes of problems that
people attempt to solve with EAs. As a result, the
predictive value of those experiments can be weak. After
all, algorithms operate on landscapes, not on problems. If
there is little or no information about how an algorithm
interacts with landscapes and the relationship between its
performance and the properties of landscapes, it would be
very difficult to predict its performance on other problems.
In the mean time, people have already identified some
disadvantages of current test problems. For example, many
of them are separable, which can be often readily solved
by local search methods[3].

Another issue is that people often spend a lot of time
manually tuning the parameters of an algorithm in the
hope that it can outperform other algorithms but finding a
set of optimal parameters for a specific problem can itself
be a difficult problem[4]. It is unfair to compare algorithms
with careful and thorough tuning to other algorithms with
no or little tuning[5]. After all, researchers are more
interested in understanding when and why an algorithm
works well or badly than simply knowing how well it can
be on a specific problem.

According to the NFL theorems[6], no algorithm is
better than others when averaged over all possible
problems. This tells us that when comparing different
algorithms, we must focus our attention on a restricted set
of problems. Unfortunately, even if we concentrate on a
very small set of problems, we still cannot completely rely
on theoretical analysis to describe or predict the
performance of an algorithm on a specific problem
because the performance of an algorithm is tightly related
to the specific problem and our current theoretical work
usually can only apply to some very general or idealized
situations. As a result, there is an urgent need for
improving approaches to experimental evaluation of
algorithms in research.

Recently, there has been some progress towards
conducting systematic evaluation using test problem
generators[1, 7-10]. The most significant advantage of
problem generators is that they allow researchers to run
controlled experiments in which the properties of
problems can be systemically varied[8]. Another
advantage is that they can remove the opportunity to hand-
tune algorithms to a specific problem and, by allowing a
large umber of problem instances to be randomly
generated, the predictive power of the simulation results
can also be increased[1, 8].

In this paper, we propose a new continuous multimodal
landscape generator based on a sum of Gaussian functions.
It can generate a wide range of landscapes, parameterized
in terms of structural features of a landscape, such as the
number of local optima, the basin size, the position and the
height of each peak and the dependences among variables.

We also test two optimization algorithms by this
landscape generator: a real-valued GA and a continuous
PBIL (Population-Based Incremental Learning)[11, 12].
We demonstrate the different behaviors of these two
algorithms under a large number of random landscapes in
order to have a whole image of the variety of performance.
We show that our landscape generator is a useful tool for
evaluating and testing EAs and can help people have a
deep understanding of the performance of various
algorithms under different situations.

In the next section, we talk about some general issues
related to evaluation and testing of EAs and briefly review
some existing test problem generators. Section 3 gives the
implementation details of our landscape generator. Section
4 describes the real-valued GA and the continuous PBIL
algorithm used in our simulations and presents some
simulation results. In the last section, we summarize our
work and discuss directions of future work.

2 Evaluating Evolutionary Algorithms

2.1 Playing with Landscapes

Traditionally, researchers try to understand and evaluate
EAs by empirically testing them on a set of benchmark
problems. In general, an unconstrained optimization
problem can be specified as:

),...,(),(min 1 n
X

xxXXf = (1)

The function f(X) is defined over n-dimensional vectors

and the goal of optimization is to find a vector X*, which
yields the minimum function value.

One advantage of EAs is that they only require
minimum knowledge about the problem. Only the fitness
value of X is needed to conduct searching. The common
property of various EAs is that, in each generation, they
will visit a population of points and calculate their fitness
values. Then, a new population of points is generated and
this process repeats until stopping criteria are met. The
difference is how to generate a set of new points from
current points. Different algorithms use different heuristics
to do this task and each heuristic used represents the
assumption of that algorithm about the structure of the
problem (i.e., the landscape). For example, crossover
operators usually assume that high-level building blocks
can be created by combining low-level building blocks.
So, hopefully, better individuals can be generated through
combination of genes on good individuals. Certainly, this
is not always the truth in practice.

Obviously, the properties of landscapes have a great
influence on the performance of optimization algorithms.
If the heuristic of an algorithm matches the structure of a
problem, it would be reasonable to expect that it will
perform well on this problem.

Furthermore, people also need to be aware of the
reverse effect. For example, in a continuous space, if a
hill-climbing algorithm uses a large step size, it may jump
over local optima where the basin size is small compared
to the step size. So, with a large step size, a hill-climbing
algorithm can effectively smooth the landscape and as a
result, some local optima will no longer exist for that
algorithm. This tells us that algorithms actually search on a
landscape defined by their operators and the fitness
function[13].

 It is possible to conduct evaluation and testing of
algorithms based on landscapes with different properties.
Furthermore, each EA is also coupled with a set of
parameters. So, if we take into account all kinds of
landscapes and all kinds of algorithms with different
specified parameters, we describe a very large “space of
experiments”, which contains all possible experiments
over all feasible values of both landscapes and algorithm
parameters. Running experiments on a small number of
test problems and with some hand-tuned parameters is like
sampling a small cluster of points in this experimental
space and any general conclusion about the space drawn
from these few points is incomplete and misleading.

2.2 Real World Problems

The No Free Lunch (NFL) theorems show that, in a
general sense, all optimization algorithms are equal across
all possible problems[6]. However, no claims are made
concerning the performance of an algorithm in practice. In
fact, the real world problems that we are interested in are
just a subset of the set of all possible problems on which
NFL establishes its conclusion.

It is hard to quantify the structure of real-world
problems. However, we would like to point out some
general differences between real-world problems and
arbitrary problems. Among all possible problems, many of
them will look like noise functions because there is no
consistent relationship between two neighboring points in
terms of fitness value. If the fitness of a point can be some
arbitrary value, having no relationship with the fitness
values of its neighboring points, we can expect that the
performance of all EAs would be very bad because the
landscape has no exploitable structure.

Fortunately, this is not true in our physical world where
changes often occur gradually or smoothly in terms of
landscape. Certainly, due to many different factors, the
micro-landscapes of real-world problems may not be very
smooth. However, if we look at them from a high level, we
can expect to find some global smoothness. Another
property of real-world problems is that some of the
parameters are often dependent of each other, which
means that it is impossible to tune one parameter
independently of others.

2.3 Good Test Problems

Previous research has identified a number of properties
that are considered to be desirable for test optimization
problems when evaluating EAs[3, 9, 14, 15]:

P1. Difficult to solve using simple methods such as hill-

climbing algorithms;
P2. Nonlinear, non-separable and non-symmetric;
P3. Scalable in terms of problem dimensionality;
P4. Scalable in terms of time to evaluate the cost function;
P5. Tunable by a small number of user parameters;
P6. Can be generated at random and are difficult to reverse

engineer;
P7. Exhibit an array of landscape-like features.

Generally speaking, test problems for EAs should be
capable of exposing the strengths and weaknesses of these
algorithms. For example, it does not make much sense to
test a GA on a unimodal landscape with no dependence
among variables, which can be easily solved by a large
number of other algorithms like hill-climbing algorithms.
Furthermore, test problems should resemble real-world
problems, at least to some extent. As mentioned in the
previous section, one expected feature of real-world
problems is global smoothness. In terms of landscape
structure, this may be the “hills”, “valleys” and the like.
Certainly, in high-dimensional spaces, these features are
not obvious.

2.4 Landscape Generators

2.4.1 Landscape Generators vs. Problem Generators

Given the discussion above, it is clear that the number of
optimization problems that might be considered relevant to
real-world problems is huge and making some general
conclusion about the performance of an algorithm based
on very limited experiments on some classical handcrafted
test problems is far from sufficient. This means that we
need to be able to run experiments on a wide range of test
problems to make our conclusion significant.

In recent years, there has been some progress towards
using test case generators as the ground for optimization
algorithms evaluation and testing. One common character
of these test case generators is that they are all able to
generate a number of random test problems. However, it is
necessary to classify them into two categories: problem
generators and landscape generators. In general, problem
generators are used to generate a set of problem instances
belonging to a specific problem class, for example,
Boolean satisfiability (SAT) problems[1]. The control
variables of these generators are usually the parameters of
these problems themselves. In SAT they may include the
number of Boolean variables and the number of
disjunctive clauses. Problem generators are useful for
investigating the performance of optimization algorithms
on a specific class of problems. Another property of these
problem generators is that they are high-level abstractions
of problems that are not intended to provide information
about the resulting fitness landscape structure, which is
very important for algorithm evaluation and testing. If we
are indeed interested in the performance of an EA across
widely different landscapes, these black-box problems are
of little direct value.

In contrast, landscape generators do not take into
account any specific class of problems. Test cases
generated are simply landscapes on which an algorithm
will conduct searching. Unlike black-box problems, the
structure of these problems can be explicitly specified,
which allows people to have not only a whole image of the
algorithm’s performance but also a good understanding
about the relationship between the performance of
algorithms and the properties of landscapes.

2.4.2 A Brief Review of Existing Landscape Generators

Below are some landscape generators that have been used
in previous work.

A. NK Landscape Generator[1] :

∑
=

=
N

i
ilocusf

N
chromosomef

1

)(
1

)((2)

B. Bit-string Multimodal Landscape Generator [8]:

{ }),(max)(
1

1
i

P

iL PeakxHAMMINGLxf −=
=

 (3)

C. Continuous Multimodal Landscape Generator [7]:









−= ∑
==

N

j

j
ij

P

iN Peakxsigmoidxf
1

2

1

1))((min)((4)

D. Dynamic Landscape Generator – DF1 [10]:

{ }22

1
)()(max),(iiii

P

i
YyXxRHyxf −+−⋅−=

=
 (5)

E. Continuous Test-case Generator [9]:

∏ =
−−= N

i

k
iii

k
ikk

Nlxxuaxf
1

1

)))((()((6)

In the NK landscape generator (A), N is the length of

the binary string (chromosome) and K represents the
number of linkages that each gene has to other genes. The
fitness contribution of each bit (gene), f(locusi), is
determined by searching a table with an index consisting
of the value of ith gene and the values of other K related
genes. One practical difficulty related to this landscape
generator is the storage issue: we need N tables with each
table containing 2K+1 elements. Another concern is that
since the table is often randomly generated, we cannot
explicitly control the properties of the landscapes. For
example, by changing the value of K, one can expect to
get landscapes with different levels of complexity but it is
difficult to quantitatively specify them.

As a contrast, other landscape generators (B to E)
generate landscapes with predefined structure. The bit-
string multimodal landscape generator (B) randomly
chooses P L-bit individuals as peaks in the search space.
All peaks have equal fitness value 1.0. Then, the fitness of
a string is decided by its Hamming distance to the closest
peak. The continuous multimodal landscape generator (C)
is an extension of (B). It creates P peaks on N dimensions,
uniformly distributed in the interval [0.0, 1.0]. All
variables are restricted to this interval with a sigmoid
function. Again, the fitness value is decided by the
distance between the individual to be evaluated and the
closest peak. In this case, the fitness value is to be
minimized and has the lowest value 0. The dynamic
landscape generator (D) is used to study EAs in changing
environments. It employs P cones to construct landscapes
in continuous spaces. Each cone has three parameters:
position, height (Hi) and slope (Ri). The fitness value of
each point in the search space is decided by its distance to
those cones, the height and the slope of each cone. The
general idea of the continuous landscape generator (E) is
to divide the search space into a number of disjoint
subspaces (N-dimensional cubes) and to define a unimodal
function fk for each cube. ui

k and li
k are the upper and

lower boundaries of ith dimension of kth subspace
respectively while ak is a predefined positive constant. It is
easy to see that the optimum of each subspace locates in
the middle of the cube. This landscape generator also
employs a set of constraints by further dividing each
subspace into feasible and infeasible parts.

2.4.3 Problems of Existing Landscape Generators

Although the above landscape generators (B to E) differ
from each other in terms of binary vs. continuous,
dynamic vs. static and constrained vs. unconstrained, they
have one common shortcoming: even if the whole
landscapes have some good properties as described in
Section 2.3, local landscape features around optima do not
reflect characteristics of real-world problems in that they
are both symmetric and separable. If we examine the local
area around an optimum, we would find that the landscape
is symmetric because if a point moves away from that
optimum, the amount of fitness loss is independent of the
dimension along which it moves. This means that each
variable has equal contribution to the fitness value or in
other words, the fitness function is equally sensitive to all
variables, which is obviously not true in real-world
problems. Furthermore, the landscape is separable because
the optimal value of each variable can be decided
separately. In the above fitness functions, there is no
explicit dependence among variables in each local area
around an optimum. As a result, as long as an optimization
algorithm can find the basin of a global optimum, the
problem can be readily solved by local algorithms such as
hill-climbing algorithms.

3 A Gaussian Landscape Generator

3.1 Landscapes: Mixture of Gaussians

In this paper we develop a landscape generator for
problems with continuous variables. The basic “building-
block” of this landscape generator is a Gaussian Function
(GF) and each landscape may contain one or more GFs,
each constituting a “hill” in the landscape. The probability
density function of an n-dimensional Gaussian distribution
is given by [16]:







 −∑−−

∑
= −)()(

2

1
exp

)2(

1
)(1

2/12/
µµ

π
XXXG T

n
 (7)

In Eq. 7, ∑ is the covariance matrix and X is the

parameter vector to be evaluated. We can see that, for each
GF, the probability of X is governed by ∑ and µ. The
fitness value of X in a landscape with m GFs can be
calculated based on the mixture of GFs:

∑∑
==

==
m

i
i

m

i
ii XGXF

11
1 1),()(ωω (8)

In this Gaussian mixture model (Eq. 8), each GF is

assigned a weight ωi and the fitness value of X is the sum
of the weighted probabilities across all GFs. Normally the
sum of the weights should be 1 but for the purpose of our
landscape generator, it does not matter. The mixture model
is well known to be capable of representing a wide range
of densities and is smooth and differentiable at every value
of X. However, it is not easy to identify the global

optimum or optima because of the way the weighted
component GFs combine in the summation in Eq. 8. To
avoid this, we propose a landscape generator based on the
maximum value as below:

 miXGXF i
i

...1),(max)(2 == (9)

According to Eq. 9, given a point X in the search space,

we first calculate its value with regard to each GF and its
fitness is set to the highest value returned by all GFs. So,
the mean vector of each GF corresponds to an optimum
and the mean vector of the GF that has the highest peak
value corresponds to the global optimum. Note that one
possible exception is when one GF is covered or
swallowed by another GF. That is, the peak of the GF is
beneath another GF.
 In summary, each landscape generated by this Gaussian
landscape generator consists of a set of GFs, which create
hills, valleys and other landscape features. The parameters
of our landscape generator are the total number of GFs
(m), the dimensionality of the landscape (n), the range of
the search space, the mean vector, variances and the
covariance matrix of each GF, which decides the shape of
each GF. In practice, any of these parameters can be varied
or held constant, depending on the goals of the
experiments and the amount of available CPU time.

3.2 Rotation

The covariance matrix ∑ determines the dependence
among variables in each GF. The surfaces of constant
fitness (height) in a GF are hyperellipsoids. The principal
axes of the hyperellipsoids are given by the eigenvectors
of ∑ and the corresponding eigenvalues give the variances
along the respective principal directions[16]. For the
purpose of algorithm evaluation and testing, dependence
means that it is impossible to optimize one variable while
setting other variables to some arbitrary values. Although
multimodal landscapes usually have inherent dependence
among variables, using a non-diagonal ∑ introduces
additional difficulty to the landscapes generated because
the micro-landscape around each peak will also become
non-separable provided that the elements on the diagonal
are not identical. However, randomly generating a valid
covariance matrix itself is not an easy task because the
matrix must be positive definite.

Alternatively, a Gaussian with arbitrary valid
covariance structure can be conveniently generated
through a series of rotations of the variable coordinate
system[17]. The basic idea is to first assume that each
variable is independent of others. So, the n-dimensional
multivariate Gaussian is simply the product of each 1D
GF. Next, a rotation matrix is generated for each GF and
the coordinate system is rotated according to the rotation
matrix so that the principal directions of each GF in its
own new coordinate system are not aligned with the
coordinate axes (Figures 1&2). Hence, ∑ is parameterized
by rotation angles and variance values. Again, each angle
can be manually chosen or randomly generated from a
predefined range.

Figure 1: A sample fitness landscape

Figure 2: The contour of the fitness landscape

One thing we should point out is that this kind of

rotation of coordinate system does not change the micro-
structure of the landscape (e.g., the shape of each GF).
After rotation, each GF is still a GF but with additional
dependences among variables. However, since each GF is
rotated independently, the whole landscape will be
changed because the spatial relation among GFs will be
changed. Another issue is that the main coordinate system
will not be rotated. Instead, for each GF, we create a new
coordinate system with the mean vector as its origin and
rotate this new coordinate system. One advantage is that
the position of each mean vector will be unchanged in the
main coordinate system so that we know exactly the
position of each optimum in the landscape after rotation.
Another advantage is that if we rotate the main coordinate
system, the global optimum may be left outside the search
space and it may be difficult to locate the new global
optimum in the new search space.

3.3 Extensions

3.3.1 Scalable GF

One potential shortcoming of the landscape generator
discussed so far is that since it is based on GFs, there is
some inherent restriction with regard to the shape of each
GF. Since the volume under a GF is equal to 1, peaks in

the landscapes generated with relatively large basin sizes
will have low fitness values and vice versa.

In order to overcome this disadvantage, we may scale
up or down each GF by a predefined or random scalar. By
doing so, we can generate many more different landscapes
and have more control on the properties of landscapes.

3.3.2 Noise

The landscapes of most real-world problems are unlikely
to be completely smooth. Furthermore, due to the
influence of some random factors, it is possible that we
may get some different results when we try to evaluate the
same set of parameters at different times. A simple method
to simulate this property is to add some Gaussian noise on
the landscapes generated to make them rugged. This kind
of noise is stochastic in that each time a point is evaluated,
a different value may be returned. Certainly, we may also
apply some deterministic noise, which actually combines
with the original fitness function and generates a new
deterministic function. However, when applying noise, we
need to be careful because this may change the global
optimum if the difference between the global optimum and
local optima is not large enough compared to the
magnitude of the noise.

4 Experiments

4.1 Motivation and Purpose

As mentioned before, a “space of experiments” can be
defined across the given algorithms and problems of
interest, with each algorithm or problem parameter being a
variable in this experimental space. This space is quite
complex in that the total number of parameters of
algorithms and problems is very large and the parameters
may be of different types (e.g., binary, integer or real-
valued). An exhaustive investigation of this space is
infeasible. Here, we do not present extensive experiments
to draw any general conclusion with regard to the
optimization algorithms under testing. Instead, we focused
on the landscape generator itself and the motivation of our
experiments was twofold. Firstly, we wanted to
demonstrate that our landscape generator is capable of
generating different landscapes in terms of problem
difficulty. Secondly, we wanted to show that our landscape
generator can differentiate between algorithms.

4.2 Methodology

4.2.1 Specification of Landscape Generator

We fixed the dimensionality to 2 and only explicitly
changed the number of GFs in each set of experiments.
Other parameters were randomly chosen. The range of
rotation angles was set to [-PI/4, PI/4] and the search space
was bounded to [-10, 10] in each dimension while the
range of variance values was set to [0.25, 5.25] in order to
avoid very sharp peaks and many flat areas. For simplicity,
we did not scale the GFs and did not apply noise.

4.2.2 Optimization Algorithms

We used two algorithms: a real-valued GA and a
continuous PBIL[12]. For the PBIL, we simply adopted
some common parameter values: learning rate (α) = 0.05;
fixed standard deviation = 1.0; population size = 50. In
each generation, the mean vector of the PBIL was updated
by a combination of the best, the second best and the worst
individuals in the population:

)()1(2,1,1 worstbestbesttt XXXXX −+⋅+⋅−=+ αα (11)

The real-valued GA used a traditional one-point
crossover, which exchanges genes after that point on two
parents. For efficiency, we applied Tournament Selection
in this GA. The mutation operator was based on a
Gaussian with mean 0 and standard deviation 1.0.
Crossover rate and mutation rate were set to 0.8 and 0.5
respectively. For the convenience of comparison, the
population size was set to 50. The GA also used elitism to
keep the current best individual to the next generation.

We are aware that different parameter settings may
have more or less influence on experiment results. Thus, it
is not reasonable to claim that one algorithm outperforms
another one in general based on results obtained with a
single instance of chosen parameter values. However, if
we regard each algorithm instance as having a fully
specified set of parameter values, we can analyze the
performance of these concrete instances.

4.2.3 Performance Criteria

We used the fitness value of the overall best individual
found to evaluate the performance. Since different
landscapes may have different global optima in terms of
fitness value, in order to facilitate the comparison across
landscapes, each raw fitness value was divided by the
value of the corresponding global optimum, producing a
normalized value between 0 and 1 (i.e., all fitness values
are positive).

Another issue is when to stop the evolution. Some
algorithms may achieve rapid improvement in the
beginning stage and then flatten out while others may
work in other ways. Furthermore, if EAs are allowed to
run for a very long time, we can expect that they would
perform (approximately) equally well because of their
global searching ability. Since our major purpose was to
demonstrate the performance difference between these two
algorithms and the performance difference across different
landscapes, we set the number of generations in each trial
to 100, which allowed 5,000 function evaluations per trial.
The first reason was, according to some preliminary
experiments, both of these two algorithms often
experienced a long stable period without any significant
improvement after 100 generations. The second reason
was, if we allowed them to run longer, say, 10,000
function evaluations, random searching or brute force
methods may also generate good results. As a result, it
may not make much sense to compare two algorithms
under this situation.

4.3 Experiment Results

We used three sets of landscapes with 1 GF, 10 GFs and
100 GFs respectively. These sets represented landscapes
with one optimum, a small number of local optima and a
large number of local optima (i.e., the number of GFs is
the upper boundary of the number of optima). Each set
contained 20 randomly generated landscapes. Each
algorithm was run on each landscape for 50 trials in order
to have a good understanding of its performance. We
presented each algorithm’s performance on each set of
landscapes using box-plots with each box showing the
performance distribution of an algorithm on a concrete
landscape over 50 trials. The box has lines at the lower
quartile, median and upper quartile values. There are also
lines extending from both ends of the box to show the
extent of the rest of the data within 1.5 times of the
interquartile range. Outliers are marked with ‘+’.

In each of the following figures, the horizontal axis
represents landscapes while the vertical axis stands for the
normalized fitness values of the best individual at the end
of evolution. For the PBIL, it represents the best individual
found so far because the best individual may not be in the
current population. In order to have a better comparison
between these two algorithms, we sorted the landscapes
based on the performance of the PBIL (i.e., the median of
each set of results). The sequence of landscapes in each
GA plot is the same as that in its corresponding PBIL plot.

Figure 3: Performance of PBIL with 1 GF

Figure 4: Performance of GA with 1 GF

Figure 5: Performance of PBIL with 10 GFs

Figure 6: Performance of GA with 10 GFs

Figures 3&4 show the performance of these two

algorithms on landscapes with only one GF.
Unsurprisingly, both of them worked very well.

From Figures 5&6 it is clear that the increasing number
of GFs did have some influence on the performance of
these two algorithms. Sometimes, they got stuck
somewhere far from the global optimum in terms of fitness
value. Furthermore, the GA still maintained high success
rate on most of these landscapes. By contrast, many
landscapes were difficult for the PBIL in which only very
few trails found the global optimum or found an individual
comparable to it.

This contrast still held in results of experiments on
landscapes with 100 GFs (Figures 7&8). Note that in a
landscape with a large number of GFs, it is very likely that
quite a few local optima are comparable to the global
optimum in terms of fitness value. This may explain why
there was no further significant decreasing in the
performance of the PBIL (i.e., Figure 5 vs. Figure 7).

Now, it is clear that, as the number of GFs increases,
which corresponds to increasing multimodality of
landscapes, the performance of these two algorithms will
all decrease. However, in our experiments, we found that
the PBIL was more sensitive to the multimodality of
landscapes than the GA. It suffered a lot in multimodal
landscapes while the GA was relatively robust. This may
be partially due to the Gaussian model it employs.

Figure 7: Performance of PBIL with 100 GFs

Figure 8: Performance of GA with 100 GFs

4.4 Discussion

The experimental work above is limited and far from an
extensive comparison of two EAs. For example, we only
considered the fitness value but did not examine how close
the best individual was to the global optimum in each trial.
We know that in some landscapes, it may be quite difficult
to locate the global optimum but it may not be very hard to
find an acceptable solution because of the existence of
several local optima of high quality. Another issue is that
we evaluated each algorithm after 100 generations but we
did not investigate each algorithm’s online performance in
each generation.

However, our current interest is not to show which
algorithm is superior to another one. Instead, we hope that
these initial experiments can serve as a good
demonstration of the usefulness of our landscape
generator. In the above experiments, we have seen that by
changing one of the properties of the landscape generator
(i.e., the number of GFs), we could systematically generate
a large number of landscapes with different levels of
difficulty. In the mean time, we can see that different
algorithms performed differently on these landscapes,
which provides a basis for empirically comparing these
algorithms in the future. Furthermore, since the structure
of each landscape was completely parameterized, it is also
possible for us to relate the performance of an algorithm to

the specific properties (e.g., the basin size of each local
optimum, the distribution of local optima and the quality
of local optima) of the landscape. By doing so, we can
expect to have a deep understanding towards the
interaction between algorithms and landscapes and it may
also help us investigate when and why an algorithm may
work well.

5 Conclusion

The major motivation of this paper was to investigate how
to conduct systematic, empirical evaluation and testing for
optimization algorithms. The ultimate goal is to help
people understand the difference among various
algorithms and provide some useful indication on
choosing the right algorithm for an unknown problem. A
landscape generator based on a sum of Gaussian functions
was proposed to aid in the conducting of controlled
experiments for continuous, unconstrained problems.
Furthermore, we demonstrated the usefulness of this
landscape generator through some experimental study of
two EAs: a real-valued GA and a continuous PBIL. By
systematically varying the properties of the landscape, we
could not only have a whole image about the performance
of an algorithm on a large number of random problems but
also understand how a specific property of the landscape
could influence its performance.

Compared to traditional methods based on canonical
test problems, this landscape generator can give us direct
control on the structure of the problems. By contrast,
classical test problems are often regarded as black-box
problems, which can only tell us whether an algorithm
works well on them but do not give us much insight into
the internal mechanism and behavior of the algorithm.
This advantage is especially significant in research where
people often wish to know exactly when and why an
algorithm will be successful or fail. In practice, although
problems generated by the landscape generator cannot
completely approximate real-world problems, if we have
good knowledge about on what kind of landscapes an
algorithm can be expected to work well, it would still help
us choose the right algorithm for a concrete problem.

A direct extension of the current work is to conduct
more extensive experiments to fully investigate the
performance of an algorithm. However, the number of
experiments required may be huge if one wants to change
parameters of the algorithm and parameters of the
landscape generator simultaneously. If we regard each of
these parameters as a variable and the performance of the
algorithm as another variable, we would actually get a
performance landscape of high dimensionality. A greedy
exploration of this landscape can be computationally
prohibitive and some statistical methods may be needed to
estimate the structure of this landscape.

Acknowledgement

This work was partially supported by the Australian
Postgraduate Award granted to Bo Yuan.

References

[1] De Jong, K.A., Potter, M.A., and Spears, W.M. "Using

Problem Generators to Explore the Effects of Epistasis". In
Seventh International Conference on Genetic Algorithms, T.
Bäck Ed., Morgan Kauffman, pp. 338-345, 1997.

[2] Eiben, A.E. and Jelasity, M. "A Critical Note on
Experimental Research Methodology in EC". In Congress
on Evolutionary Computation, Honolulu, Hawaii, IEEE, pp.
582-587, 2002.

[3] Whitley, D., Mathias, K., Rana, S. and Dzubera, J.
"Evaluating Evolutionary Algorithms", Artificial
Intelligence, 85(1-2): pp. 245-276, 1996.

[4] Johnson, D.S. "A Theoretician's Guide to the Experimental
Analysis of Algorithms". In 5th and 6th DIMACS
Implementation Challenges, Goldwasser, et al. Eds., 2002.

[5] Hooker, J.N. "Testing heuristics: We have it all wrong",
Journal of Heuristics, 1(1): pp. 33-42, 1995.

[6] Wolpert, D.H. and Macready, W.G. "No Free Lunch
Theorems for Optimization", IEEE Transactions on
Evolutionary Computation, 1(1): pp. 67-82, 1997.

[7] Kennedy, J. "Continuous Valued Multimodality Generator
for Evolutionary Algorithms", 1997. Retrieved from:
www.cs.uwyo.edu/~wspears/multi.kennedy.html (25 April
2003)

[8] Kennedy, J. and Spears, W.M. "Matching Algorithms to
Problems: An Experimental Test of the Particle Swarm and
Some Genetic Algorithms on the Multimodal Problem
Generator". In International Conference on Evolutionary
Computation, IEEE, pp. 78-83, 1998.

[9] Michalewicz, Z., Deb, K., Schmidt, M. and Stidsen, T.
"Test-case Generator for Nonlinear Continuous Parameter
Optimization Techniques", IEEE Transactions on
Evolutionary Computation, 4(3): pp. 197-215, 2000.

[10] Morrison, R.W. and De Jong, K.A. "A Test Problem
Generator for Non-Stationary Environments". In Congress
on Evolutionary Computation, IEEE, pp. 2047 - 2053, 1999.

[11] Baluja, S. and Caruana, R. "Removing the Genetics from
the Standard Genetic Algorithm", Tech. Report CMU-CS-
95-141, Carnegie Mellon University, 1995.

[12] Sebag, M. and Ducoulombier, A. "Extending Population-
Based Incremental Learning to Continuous Search Spaces".
In Parallel Problem Solving from Nature-PPSN V, A.E.
Eiben, et al. Eds., Amsterdam, Springer, pp. 418-427, 1998.

[13] Jones, T. "Evolutionary Algorithms, Fitness Landscapes and
Search", PhD Thesis, University of New Mexico, 1995.

[14] Holland, J.H. "Building blocks, Cohort Genetic Algorithms,
and Hyperplane-defined Functions", Evolutionary
Computation, 8(4): pp. 373-391, 2000.

[15] Gallagher, M. "Fitness Distance Correlation of Neural
Network Error Surfaces: A Scalable, Continuous
Optimization Problem". In European Conference on
Machine Learning (ECML 2001), L. De Raedt, et al. Eds.,
pp. 157-166, 2001.

[16] Bishop, C.M. Neural Networks for Pattern Recognition,
Oxford University Press, 1995.

[17] Salomon, R. "Re-evaluating genetic algorithm performance
under coordinate rotation of benchmark functions. A survey
of some theoretical and practical aspects of genetic
algorithms", BioSystems, 39: pp. 263-278, 1996.

