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Abstract - In this paper, we address some issues related 
to evaluating and testing evolutionary algorithms. A 
landscape generator based on Gaussian functions is 
proposed for generating a variety of continuous 
landscapes as fitness functions. Through some initial 
experiments, we illustrate the usefulness of this 
landscape generator in testing evolutionary algorithms. 
 
 
1 Introduction 
 
Evolutionary Algorithms (EAs) have been successful at 
solving many challenging problems. Driven by their 
success, much effort has been devoted to designing new 
algorithms or improving existing algorithms. By contrast, 
little work has been done to answer the question: How can 
we effectively evaluate the performance of these 
algorithms? EAs are commonly evaluated based on some 
canonical test problems. But if an algorithm works well on 
a set of test problems, it does not necessarily mean that it 
will also perform well on other problems[1]. It is 
insufficient to draw general conclusions according to 
simulation results based on ad hoc test problems[2].  

 The reason is that people often regard these test 
problems as black-boxes and do not have very good 
knowledge about their landscapes. It is very likely that 
they are not representative of the classes of problems that 
people attempt to solve with EAs. As a result, the 
predictive value of those experiments can be weak.  After 
all, algorithms operate on landscapes, not on problems. If 
there is little or no information about how an algorithm 
interacts with landscapes and the relationship between its 
performance and the properties of landscapes, it would be 
very difficult to predict its performance on other problems. 
In the mean time, people have already identified some 
disadvantages of current test problems. For example, many 
of them are separable, which can be often readily solved 
by local search methods[3].  

Another issue is that people often spend a lot of time 
manually tuning the parameters of an algorithm in the 
hope that it can outperform other algorithms but finding a 
set of optimal parameters for a specific problem can itself 
be a difficult problem[4]. It is unfair to compare algorithms 
with careful and thorough tuning to other algorithms with 
no or little tuning[5]. After all, researchers are more 
interested in understanding when and why an algorithm 
works well or badly than simply knowing how well it can 
be on a specific problem. 

According to the NFL theorems[6], no algorithm is 
better than others when averaged over all possible 
problems. This tells us that when comparing different 
algorithms, we must focus our attention on a restricted set 
of problems. Unfortunately, even if we concentrate on a 
very small set of problems, we still cannot completely rely 
on theoretical analysis to describe or predict the 
performance of an algorithm on a specific problem 
because the performance of an algorithm is tightly related 
to the specific problem and our current theoretical work 
usually can only apply to some very general or idealized 
situations. As a result, there is an urgent need for 
improving approaches to experimental evaluation of 
algorithms in research.  

Recently, there has been some progress towards 
conducting systematic evaluation using test problem 
generators[1, 7-10]. The most significant advantage of 
problem generators is that they allow researchers to run 
controlled experiments in which the properties of 
problems can be systemically varied[8]. Another 
advantage is that they can remove the opportunity to hand-
tune algorithms to a specific problem and, by allowing a 
large umber of problem instances to be randomly 
generated, the predictive power of the simulation results 
can also be increased[1, 8]. 

In this paper, we propose a new continuous multimodal 
landscape generator based on a sum of Gaussian functions. 
It can generate a wide range of landscapes, parameterized 
in terms of structural features of a landscape, such as the 
number of local optima, the basin size, the position and the 
height of each peak and the dependences among variables.  

We also test two optimization algorithms by this 
landscape generator: a real-valued GA and a continuous 
PBIL (Population-Based Incremental Learning)[11, 12]. 
We demonstrate the different behaviors of these two 
algorithms under a large number of random landscapes in 
order to have a whole image of the variety of performance. 
We show that our landscape generator is a useful tool for 
evaluating and testing EAs and can help people have a 
deep understanding of the performance of various 
algorithms under different situations. 

In the next section, we talk about some general issues 
related to evaluation and testing of EAs and briefly review 
some existing test problem generators. Section 3 gives the 
implementation details of our landscape generator. Section 
4 describes the real-valued GA and the continuous PBIL 
algorithm used in our simulations and presents some 
simulation results. In the last section, we summarize our 
work and discuss directions of future work. 



2 Evaluating Evolutionary Algorithms 
 
2.1 Playing with Landscapes 
 
Traditionally, researchers try to understand and evaluate 
EAs by empirically testing them on a set of benchmark 
problems. In general, an unconstrained optimization 
problem can be specified as: 
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The function f(X) is defined over n-dimensional vectors 

and the goal of optimization is to find a vector X*, which 
yields the minimum function value. 

One advantage of EAs is that they only require 
minimum knowledge about the problem. Only the fitness 
value of X is needed to conduct searching. The common 
property of various EAs is that, in each generation, they 
will visit a population of points and calculate their fitness 
values. Then, a new population of points is generated and 
this process repeats until stopping criteria are met. The 
difference is how to generate a set of new points from 
current points. Different algorithms use different heuristics 
to do this task and each heuristic used represents the 
assumption of that algorithm about the structure of the 
problem (i.e., the landscape). For example, crossover 
operators usually assume that high-level building blocks 
can be created by combining low-level building blocks. 
So, hopefully, better individuals can be generated through 
combination of genes on good individuals. Certainly, this 
is not always the truth in practice. 

Obviously, the properties of landscapes have a great 
influence on the performance of optimization algorithms. 
If the heuristic of an algorithm matches the structure of a 
problem, it would be reasonable to expect that it will 
perform well on this problem.  

Furthermore, people also need to be aware of the 
reverse effect. For example, in a continuous space, if a 
hill-climbing algorithm uses a large step size, it may jump 
over local optima where the basin size is small compared 
to the step size. So, with a large step size, a hill-climbing 
algorithm can effectively smooth the landscape and as a 
result, some local optima will no longer exist for that 
algorithm. This tells us that algorithms actually search on a 
landscape defined by their operators and the fitness 
function[13].  

 It is possible to conduct evaluation and testing of 
algorithms based on landscapes with different properties. 
Furthermore, each EA is also coupled with a set of 
parameters. So, if we take into account all kinds of 
landscapes and all kinds of algorithms with different 
specified parameters, we describe a very large “space of 
experiments”, which contains all possible experiments 
over all feasible values of both landscapes and algorithm 
parameters. Running experiments on a small number of 
test problems and with some hand-tuned parameters is like 
sampling a small cluster of points in this experimental 
space and any general conclusion about the space drawn 
from these few points is  incomplete and misleading. 

2.2 Real World Problems 
 
The No Free Lunch (NFL) theorems show that, in a 
general sense, all optimization algorithms are equal across 
all possible problems[6]. However, no claims are made 
concerning the performance of an algorithm in practice. In 
fact, the real world problems that we are interested in are 
just a subset of the set of all possible problems on which 
NFL establishes its conclusion.  

It is hard to quantify the structure of real-world 
problems. However, we would like to point out some 
general differences between real-world problems and 
arbitrary problems. Among all possible problems, many of 
them will look like noise functions because there is no 
consistent relationship between two neighboring points in 
terms of fitness value. If the fitness of a point can be some 
arbitrary value, having no relationship with the fitness 
values of its neighboring points, we can expect that the 
performance of all EAs would be very bad because the 
landscape has no exploitable structure. 

Fortunately, this is not true in our physical world where 
changes often occur gradually or smoothly in terms of 
landscape. Certainly, due to many different factors, the 
micro-landscapes of real-world problems may not be very 
smooth. However, if we look at them from a high level, we 
can expect to find some global smoothness. Another 
property of real-world problems is that some of the 
parameters are often dependent of each other, which 
means that it is impossible to tune one parameter 
independently of others. 
 
2.3 Good Test Problems 
 
Previous research has identified a number of properties 
that are considered to be desirable for test optimization 
problems when evaluating EAs[3, 9, 14, 15]:  

 
P1. Difficult to solve using simple methods such as hill-

climbing algorithms; 
P2. Nonlinear, non-separable and non-symmetric; 
P3. Scalable in terms of problem dimensionality; 
P4. Scalable in terms of time to evaluate the cost function; 
P5. Tunable by a small number of user parameters; 
P6. Can be generated at random and are difficult to reverse 

engineer; 
P7. Exhibit an array of landscape-like features. 
 

Generally speaking, test problems for EAs should be 
capable of exposing the strengths and weaknesses of these 
algorithms. For example, it does not make much sense to 
test a GA on a unimodal landscape with no dependence 
among variables, which can be easily solved by a large 
number of other algorithms like hill-climbing algorithms. 
Furthermore, test problems should resemble real-world 
problems, at least to some extent. As mentioned in the 
previous section, one expected feature of real-world 
problems is global smoothness. In terms of landscape 
structure, this may be the “hills”, “valleys” and the like. 
Certainly, in high-dimensional spaces, these features are 
not obvious. 



2.4 Landscape Generators 
 
2.4.1 Landscape Generators vs. Problem Generators 
 
Given the discussion above, it is clear that the number of 
optimization problems that might be considered relevant to 
real-world problems is huge and making some general 
conclusion about the performance of an algorithm based 
on very limited experiments on some classical handcrafted 
test problems is far from sufficient. This means that we 
need to be able to run experiments on a wide range of test 
problems to make our conclusion significant.  

In recent years, there has been some progress towards 
using test case generators as the ground for optimization 
algorithms evaluation and testing. One common character 
of these test case generators is that they are all able to 
generate a number of random test problems. However, it is 
necessary to classify them into two categories: problem 
generators and landscape generators. In general, problem 
generators are used to generate a set of problem instances 
belonging to a specific problem class, for example, 
Boolean satisfiability (SAT) problems[1]. The control 
variables of these generators are usually the parameters of 
these problems themselves. In SAT they may include the 
number of Boolean variables and the number of 
disjunctive clauses. Problem generators are useful for 
investigating the performance of optimization algorithms 
on a specific class of problems. Another property of these 
problem generators is that they are high-level abstractions 
of problems that are not intended to provide information 
about the resulting fitness landscape structure, which is 
very important for algorithm evaluation and testing. If we 
are indeed interested in the performance of an EA across 
widely different landscapes, these black-box problems are 
of little direct value.  

In contrast, landscape generators do not take into 
account any specific class of problems. Test cases 
generated are simply landscapes on which an algorithm 
will conduct searching. Unlike black-box problems, the 
structure of these problems can be explicitly specified, 
which allows people to have not only a whole image of the 
algorithm’s performance but also a good understanding 
about the relationship between the performance of 
algorithms and the properties of landscapes.  
 
2.4.2 A Brief Review of Existing Landscape Generators 
 
Below are some landscape generators that have been used 
in previous work. 
 
A. NK Landscape Generator[1] : 
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B. Bit-string Multimodal Landscape Generator [8]: 
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C. Continuous Multimodal Landscape Generator [7]: 
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D. Dynamic Landscape Generator – DF1 [10]: 
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E. Continuous Test-case Generator [9]: 
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In the NK landscape generator (A), N is the length of 

the binary string (chromosome) and K represents the 
number of linkages that each gene has to other genes. The 
fitness contribution of each bit (gene), f(locusi), is 
determined by searching a table with an index consisting 
of the value of ith gene and the values of other K related 
genes. One practical difficulty related to this landscape 
generator is the storage issue: we need N tables with each 
table containing 2K+1 elements. Another concern is that 
since the table is often randomly generated, we cannot 
explicitly control the properties of the landscapes. For 
example, by changing the value of K, one can expect to 
get landscapes with different levels of complexity but it is 
difficult to quantitatively specify them.  

As a contrast, other landscape generators (B to E) 
generate landscapes with predefined structure. The bit-
string multimodal landscape generator (B) randomly 
chooses P L-bit individuals as peaks in the search space. 
All peaks have equal fitness value 1.0. Then, the fitness of 
a string is decided by its Hamming distance to the closest 
peak. The continuous multimodal landscape generator (C) 
is an extension of (B).  It creates P peaks on N dimensions, 
uniformly distributed in the interval [0.0, 1.0]. All 
variables are restricted to this interval with a sigmoid 
function.  Again, the fitness value is decided by the 
distance between the individual to be evaluated and the 
closest peak. In this case, the fitness value is to be 
minimized and has the lowest value 0. The dynamic 
landscape generator (D) is used to study EAs in changing 
environments. It employs P cones to construct landscapes 
in continuous spaces. Each cone has three parameters: 
position, height (Hi) and slope (Ri). The fitness value of 
each point in the search space is decided by its distance to 
those cones, the height and the slope of each cone. The 
general idea of the continuous landscape generator (E) is 
to divide the search space into a number of disjoint 
subspaces (N-dimensional cubes) and to define a unimodal 
function fk for each cube.  ui

k and li
k are the upper and 

lower boundaries of ith dimension of kth subspace 
respectively while ak is a predefined positive constant. It is 
easy to see that the optimum of each subspace locates in 
the middle of the cube. This landscape generator also 
employs a set of constraints by further dividing each 
subspace into feasible and infeasible parts.  



2.4.3 Problems of Existing Landscape Generators 
 
Although the above landscape generators (B to E) differ 
from each other in terms of binary vs. continuous, 
dynamic vs. static and constrained vs. unconstrained, they 
have one common shortcoming: even if the whole 
landscapes have some good properties as described in 
Section 2.3, local landscape features around optima do not 
reflect characteristics of real-world problems in that they 
are both symmetric and separable. If we examine the local 
area around an optimum, we would find that the landscape 
is symmetric because if a point moves away from that 
optimum, the amount of fitness loss is independent of the 
dimension along which it moves. This means that each 
variable has equal contribution to the fitness value or in 
other words, the fitness function is equally sensitive to all 
variables, which is obviously not true in real-world 
problems. Furthermore, the landscape is separable because 
the optimal value of each variable can be decided 
separately. In the above fitness functions, there is no 
explicit dependence among variables in each local area 
around an optimum. As a result, as long as an optimization 
algorithm can find the basin of a global optimum, the 
problem can be readily solved by local algorithms such as 
hill-climbing algorithms. 
 
3 A Gaussian Landscape Generator 
 
3.1 Landscapes: Mixture of Gaussians 
 
In this paper we develop a landscape generator for 
problems with continuous variables.  The basic “building-
block” of this landscape generator is a Gaussian Function 
(GF) and each landscape may contain one or more GFs, 
each constituting a “hill” in the landscape. The probability 
density function of an n-dimensional Gaussian distribution 
is given by [16]:  
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In Eq. 7, ∑ is the covariance matrix and X is the 

parameter vector to be evaluated. We can see that, for each 
GF, the probability of X is governed by ∑ and µ. The 
fitness value of X in a landscape with m GFs can be 
calculated based on the mixture of GFs: 

 

∑∑
==

==
m

i
i

m

i
ii XGXF

11
1 1),()( ωω                   (8) 

 
In this Gaussian mixture model (Eq. 8), each GF is 

assigned a weight ωi and the fitness value of X is the sum 
of the weighted probabilities across all GFs. Normally the 
sum of the weights should be 1 but for the purpose of our 
landscape generator, it does not matter. The mixture model 
is well known to be capable of representing a wide range 
of densities and is smooth and differentiable at every value 
of X. However, it is not easy to identify the global 

optimum or optima because of the way the weighted 
component GFs combine in the summation in Eq. 8. To 
avoid this, we propose a landscape generator based on the 
maximum value as below:  
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According to Eq. 9, given a point X in the search space, 

we first calculate its value with regard to each GF and its 
fitness is set to the highest value returned by all GFs. So, 
the mean vector of each GF corresponds to an optimum 
and the mean vector of the GF that has the highest peak 
value corresponds to the global optimum. Note that one 
possible exception is when one GF is covered or 
swallowed by another GF. That is, the peak of the GF is 
beneath another GF. 
     In summary, each landscape generated by this Gaussian 
landscape generator consists of a set of GFs, which create 
hills, valleys and other landscape features. The parameters 
of our landscape generator are the total number of GFs 
(m), the dimensionality of the landscape (n), the range of 
the search space, the mean vector, variances and the 
covariance matrix of each GF, which decides the shape of 
each GF. In practice, any of these parameters can be varied 
or held constant, depending on the goals of the 
experiments and the amount of available CPU time. 

 
3.2 Rotation 
 
The covariance matrix ∑ determines the dependence 
among variables in each GF. The surfaces of constant 
fitness (height) in a GF are hyperellipsoids. The principal 
axes of the hyperellipsoids are given by the eigenvectors 
of ∑ and the corresponding eigenvalues give the variances 
along the respective principal directions[16]. For the 
purpose of algorithm evaluation and testing, dependence 
means that it is impossible to optimize one variable while 
setting other variables to some arbitrary values. Although 
multimodal landscapes usually have inherent dependence 
among variables, using a non-diagonal ∑ introduces 
additional difficulty to the landscapes generated because 
the micro-landscape around each peak will also become 
non-separable provided that the elements on the diagonal 
are not identical. However, randomly generating a valid 
covariance matrix itself is not an easy task because the 
matrix must be positive definite.  

Alternatively, a Gaussian with arbitrary valid 
covariance structure can be conveniently generated 
through a series of rotations of the variable coordinate 
system[17]. The basic idea is to first assume that each 
variable is independent of others. So, the n-dimensional 
multivariate Gaussian is simply the product of each 1D 
GF. Next, a rotation matrix is generated for each GF and 
the coordinate system is rotated according to the rotation 
matrix so that the principal directions of each GF in its 
own new coordinate system are not aligned with the 
coordinate axes (Figures 1&2). Hence, ∑ is parameterized 
by rotation angles and variance values. Again, each angle 
can be manually chosen or randomly generated from a 
predefined range. 



 
Figure 1: A sample fitness landscape 

 
Figure 2: The contour of the fitness landscape 

 
One thing we should point out is that this kind of 

rotation of coordinate system does not change the micro-
structure of the landscape (e.g., the shape of each GF). 
After rotation, each GF is still a GF but with additional 
dependences among variables. However, since each GF is 
rotated independently, the whole landscape will be 
changed because the spatial relation among GFs will be 
changed. Another issue is that the main coordinate system 
will not be rotated. Instead, for each GF, we create a new 
coordinate system with the mean vector as its origin and 
rotate this new coordinate system. One advantage is that 
the position of each mean vector will be unchanged in the 
main coordinate system so that we know exactly the 
position of each optimum in the landscape after rotation. 
Another advantage is that if we rotate the main coordinate 
system, the global optimum may be left outside the search 
space and it may be difficult to locate the new global 
optimum in the new search space. 
 
3.3 Extensions 
 
3.3.1 Scalable GF 
 
One potential shortcoming of the landscape generator 
discussed so far is that since it is based on GFs, there is 
some inherent restriction with regard to the shape of each 
GF. Since the volume under a GF is equal to 1, peaks in 

the landscapes generated with relatively large basin sizes 
will have low fitness values and vice versa.  

In order to overcome this disadvantage, we may scale 
up or down each GF by a predefined or random scalar. By 
doing so, we can generate many more different landscapes 
and have more control on the properties of landscapes.  
 
3.3.2 Noise 
 
The landscapes of most real-world problems are unlikely 
to be completely smooth. Furthermore, due to the 
influence of some random factors, it is possible that we 
may get some different results when we try to evaluate the 
same set of parameters at different times. A simple method 
to simulate this property is to add some Gaussian noise on 
the landscapes generated to make them rugged. This kind 
of noise is stochastic in that each time a point is evaluated, 
a different value may be returned. Certainly, we may also 
apply some deterministic noise, which actually combines 
with the original fitness function and generates a new 
deterministic function. However, when applying noise, we 
need to be careful because this may change the global 
optimum if the difference between the global optimum and 
local optima is not large enough compared to the 
magnitude of the noise. 
 
4 Experiments 
 
4.1 Motivation and Purpose 
 
As mentioned before, a “space of experiments” can be 
defined across the given algorithms and problems of 
interest, with each algorithm or problem parameter being a 
variable in this experimental space. This space is quite 
complex in that the total number of parameters of 
algorithms and problems is very large and the parameters 
may be of different types (e.g., binary, integer or real-
valued). An exhaustive investigation of this space is 
infeasible. Here, we do not present extensive experiments 
to draw any general conclusion with regard to the 
optimization algorithms under testing. Instead, we focused 
on the landscape generator itself and the motivation of our 
experiments was twofold. Firstly, we wanted to 
demonstrate that our landscape generator is capable of 
generating different landscapes in terms of problem 
difficulty. Secondly, we wanted to show that our landscape 
generator can differentiate between algorithms.  
 
4.2 Methodology 
 
4.2.1 Specification of Landscape Generator 
 
We fixed the dimensionality to 2 and only explicitly 
changed the number of GFs in each set of experiments. 
Other parameters were randomly chosen. The range of 
rotation angles was set to [-PI/4, PI/4] and the search space 
was bounded to [-10, 10] in each dimension while the 
range of variance values was set to [0.25, 5.25] in order to 
avoid very sharp peaks and many flat areas. For simplicity, 
we did not scale the GFs and did not apply noise. 



4.2.2 Optimization Algorithms  
 
We used two algorithms: a real-valued GA and a 
continuous PBIL[12]. For the PBIL, we simply adopted 
some common parameter values: learning rate (α) = 0.05; 
fixed standard deviation = 1.0; population size = 50. In 
each generation, the mean vector of the PBIL was updated 
by a combination of the best, the second best and the worst 
individuals in the population: 
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The real-valued GA used a traditional one-point 
crossover, which exchanges genes after that point on two 
parents. For efficiency, we applied Tournament Selection 
in this GA. The mutation operator was based on a 
Gaussian with mean 0 and standard deviation 1.0.   
Crossover rate and mutation rate were set to 0.8 and 0.5 
respectively. For the convenience of comparison, the 
population size was set to 50. The GA also used elitism to 
keep the current best individual to the next generation. 

We are aware that different parameter settings may 
have more or less influence on experiment results. Thus, it 
is not reasonable to claim that one algorithm outperforms 
another one in general based on results obtained with a 
single instance of chosen parameter values. However, if 
we regard each algorithm instance as having a fully 
specified set of parameter values, we can analyze the 
performance of these concrete instances. 

  
4.2.3 Performance Criteria 
 
We used the fitness value of the overall best individual 
found to evaluate the performance. Since different 
landscapes may have different global optima in terms of 
fitness value, in order to facilitate the comparison across 
landscapes, each raw fitness value was divided by the 
value of the corresponding global optimum, producing a 
normalized value between 0 and 1 (i.e., all fitness values 
are positive).  

Another issue is when to stop the evolution. Some 
algorithms may achieve rapid improvement in the 
beginning stage and then flatten out while others may 
work in other ways. Furthermore, if EAs are allowed to 
run for a very long time, we can expect that they would 
perform (approximately) equally well because of their 
global searching ability. Since our major purpose was to 
demonstrate the performance difference between these two 
algorithms and the performance difference across different 
landscapes, we set the number of generations in each trial 
to 100, which allowed 5,000 function evaluations per trial. 
The first reason was, according to some preliminary 
experiments, both of these two algorithms often 
experienced a long stable period without any significant 
improvement after 100 generations. The second reason 
was, if we allowed them to run longer, say, 10,000 
function evaluations, random searching or brute force 
methods may also generate good results. As a result, it 
may not make much sense to compare two algorithms 
under this situation. 

4.3 Experiment Results 
 
We used three sets of landscapes with 1 GF, 10 GFs and 
100 GFs respectively. These sets represented landscapes 
with one optimum, a small number of local optima and a 
large number of local optima (i.e., the number of GFs is 
the upper boundary of the number of optima). Each set 
contained 20 randomly generated landscapes. Each 
algorithm was run on each landscape for 50 trials in order 
to have a good understanding of its performance. We 
presented each algorithm’s performance on each set of 
landscapes using box-plots with each box showing the 
performance distribution of an algorithm on a concrete 
landscape over 50 trials. The box has lines at the lower 
quartile, median and upper quartile values. There are also 
lines extending from both ends of the box to show the 
extent of the rest of the data within 1.5 times of the 
interquartile range. Outliers are marked with ‘+’. 

In each of the following figures, the horizontal axis 
represents landscapes while the vertical axis stands for the 
normalized fitness values of the best individual at the end 
of evolution. For the PBIL, it represents the best individual 
found so far because the best individual may not be in the 
current population. In order to have a better comparison 
between these two algorithms, we sorted the landscapes 
based on the performance of the PBIL (i.e., the median of 
each set of results). The sequence of landscapes in each 
GA plot is the same as that in its corresponding PBIL plot. 

 
Figure 3: Performance of PBIL with 1 GF 

 
Figure 4: Performance of GA with 1 GF 



 
Figure 5: Performance of PBIL with 10 GFs 

 
Figure 6: Performance of GA with 10 GFs 

 
Figures 3&4 show the performance of these two 

algorithms on landscapes with only one GF. 
Unsurprisingly, both of them worked very well. 

From Figures 5&6 it is clear that the increasing number 
of GFs did have some influence on the performance of 
these two algorithms. Sometimes, they got stuck 
somewhere far from the global optimum in terms of fitness 
value. Furthermore, the GA still maintained high success 
rate on most of these landscapes. By contrast, many 
landscapes were difficult for the PBIL in which only very 
few trails found the global optimum or found an individual 
comparable to it.  

This contrast still held in results of experiments on 
landscapes with 100 GFs (Figures 7&8). Note that in a 
landscape with a large number of GFs, it is very likely that 
quite a few local optima are comparable to the global 
optimum in terms of fitness value. This may explain why 
there was no further significant decreasing in the 
performance of the PBIL (i.e., Figure 5 vs. Figure 7). 

Now, it is clear that, as the number of GFs increases, 
which corresponds to increasing multimodality of 
landscapes, the performance of these two algorithms will 
all decrease. However, in our experiments, we found that 
the PBIL was more sensitive to the multimodality of 
landscapes than the GA. It suffered a lot in multimodal 
landscapes while the GA was relatively robust. This may 
be partially due to the Gaussian model it employs. 

 
Figure 7: Performance of PBIL with 100 GFs 

 
Figure 8: Performance of GA with 100 GFs 

 
4.4 Discussion 
 
The experimental work above is limited and far from an 
extensive comparison of two EAs. For example, we only 
considered the fitness value but did not examine how close 
the best individual was to the global optimum in each trial. 
We know that in some landscapes, it may be quite difficult 
to locate the global optimum but it may not be very hard to 
find an acceptable solution because of the existence of 
several local optima of high quality. Another issue is that 
we evaluated each algorithm after 100 generations but we 
did not investigate each algorithm’s online performance in 
each generation.  

However, our current interest is not to show which 
algorithm is superior to another one. Instead, we hope that 
these initial experiments can serve as a good 
demonstration of the usefulness of our landscape 
generator. In the above experiments, we have seen that by 
changing one of the properties of the landscape generator 
(i.e., the number of GFs), we could systematically generate 
a large number of landscapes with different levels of 
difficulty. In the mean time, we can see that different 
algorithms performed differently on these landscapes, 
which provides a basis for empirically comparing these 
algorithms in the future. Furthermore, since the structure 
of each landscape was completely parameterized, it is also 
possible for us to relate the performance of an algorithm to 



the specific properties (e.g., the basin size of each local 
optimum, the distribution of local optima and the quality 
of local optima) of the landscape. By doing so, we can 
expect to have a deep understanding towards the 
interaction between algorithms and landscapes and it may 
also help us investigate when and why an algorithm may 
work well. 
 
5 Conclusion  
 
The major motivation of this paper was to investigate how 
to conduct systematic, empirical evaluation and testing for 
optimization algorithms. The ultimate goal is to help 
people understand the difference among various 
algorithms and provide some useful indication on 
choosing the right algorithm for an unknown problem. A 
landscape generator based on a sum of Gaussian functions 
was proposed to aid in the conducting of controlled 
experiments for continuous, unconstrained problems. 
Furthermore, we demonstrated the usefulness of this 
landscape generator through some experimental study of 
two EAs: a real-valued GA and a continuous PBIL. By 
systematically varying the properties of the landscape, we 
could not only have a whole image about the performance 
of an algorithm on a large number of random problems but 
also understand how a specific property of the landscape 
could influence its performance. 

Compared to traditional methods based on canonical 
test problems, this landscape generator can give us direct 
control on the structure of the problems. By contrast, 
classical test problems are often regarded as black-box 
problems, which can only tell us whether an algorithm 
works well on them but do not give us much insight into 
the internal mechanism and behavior of the algorithm. 
This advantage is especially significant in research where 
people often wish to know exactly when and why an 
algorithm will be successful or fail. In practice, although 
problems generated by the landscape generator cannot 
completely approximate real-world problems, if we have 
good knowledge about on what kind of landscapes an 
algorithm can be expected to work well, it would still help 
us choose the right algorithm for a concrete problem.  

A direct extension of the current work is to conduct 
more extensive experiments to fully investigate the 
performance of an algorithm. However, the number of 
experiments required may be huge if one wants to change 
parameters of the algorithm and parameters of the 
landscape generator simultaneously. If we regard each of 
these parameters as a variable and the performance of the 
algorithm as another variable, we would actually get a 
performance landscape of high dimensionality. A greedy 
exploration of this landscape can be computationally 
prohibitive and some statistical methods may be needed to 
estimate the structure of this landscape. 
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