
A Hybrid Approach to Parameter Tuning in Genetic Algorithms

Bo Yuan
School of Information Technology and

Electrical Engineering
The University of Queensland

QLD 4072, Australia
boyuan@itee.uq.edu.au

Marcus Gallagher
School of Information Technology and

Electrical Engineering
The University of Queensland

QLD 4072, Australia
marcusg@itee.uq.edu.au

Abstract- Choosing the best parameter setting is a well-
known important and challenging task in Evolutionary
Algorithms (EAs). As one of the earliest parameter
tuning techniques, the Meta-EA approach regards each
parameter as a variable and the performance of
algorithm as the fitness value and conducts searching
on this landscape using various genetic operators.
However, there are some inherent issues in this
method. For example, some algorithm parameters are
generally not searchable because it is difficult to define
any sensible distance metric on them. In this paper, a
novel approach is proposed by combining the Meta-EA
approach with a method called Racing, which is based
on the statistical analysis of algorithm performance
with different parameter settings. A series of
experiments are conducted to show the reliability and
efficiency of this hybrid approach in tuning Genetic
Algorithms (GAs) on two benchmark problems.

1 Introduction

Evolutionary Algorithms (EAs) refer to a broad class of
optimization algorithms under a unified framework. The
total number of algorithms and their variations is very
large and in practice a number of choices such as the
crossover rate, the type of crossover and the population
size etc. must be made in advance in order to fully specify
a complete EA. The importance of these choices is at least
threefold. Firstly, EAs are not completely parameter robust
and EAs with inappropriate choices may not be able to
solve problems effectively[10]. Secondly, when two or
more EAs are compared, arbitrarily specified parameters
may make the comparison unfair and conclusions
misleading. Finally, finding the optimal setting may be also
helpful for better understanding the mechanisms of EAs.

There has been a large amount work dedicated to
finding the “optimal” parameters of EAs [6, 7]. However,
it has shown that this kind of optimal setting does not exist
in general. In fact, for different problems, there are
different optimal specifications[17]. If each algorithm
parameter is regarded as a variable and the performance of
the EA is regarded as the objective value, there is a
performance landscape of EAs on each problem and
finding the best parameter setting simply means finding the
global optimum.

There are a number of possible approaches to selecting
algorithm parameters based on classical statistical methods
such as Response Surfaces and Regression[14]. One major
advantage is that by explicitly building a model of the
relationship between algorithm parameters and the
algorithm’s performance, a deep insight into the interaction
among parameters can be achieved. However, these
methods are not efficient in terms of searching complex
performance landscapes because in order to build a full
model involving many variables, an extremely large
number of sampling points are needed. On the other hand,
building a local model using a small number of sampling
points is equal to doing local search and may drive the
tuning process to a local optimum. Please refer to [2]for
detailed introduction and references.

An alternative approach to parameter selection is to
employ another EA, called a Meta-EA[1, 9], to conduct
searching because EAs are believed to be able to search
complex landscapes efficiently. Traditionally, in the Meta-
EA level, each individual contains all the necessary
algorithm parameters and thus fully specifies an EA. The
fitness of each individual is evaluated by running the EA
on some test problems for a few trials. Results have shown
that this Meta-EA approach could successfully find
algorithm parameters that are better than default values
recommended in the literature.

However, there are also some issues with the Meta-EA
approach. Firstly, not all algorithm parameters are
searchable by EAs. For example, suppose that there is a
variable specifying the type of selection. Since it is not
obvious how to define a reasonable distance metric along
this dimension (i.e., the distance between each pair of
selection operators), it may be very difficult to design
appropriate search operators other than uniform/random
search. Secondly, there may be also some variables that
only require specification in certain situations. For
example, suppose that there is a variable specifying the
tournament size in Tournament Selection. However, when
the current selection method is Truncation Selection, this
variable is not applicable. In other words, the
representation itself is not very efficient. Finally, this
Meta-EA approach is usually very time-consuming
because in order to evaluate each individual, the
corresponding EA must be run for a large number of trials
with different initial conditions due to the stochastic
behaviour of these algorithms.

In this paper, we address the above issues by combining
a statistical method called Racing [13] with the Meta-EA
approach. Racing is originally proposed as a searching
method to efficiently identify the best performing learning
algorithm from a set of candidates and has also been
applied in evaluating EAs[3, 18]. Usually, it only requires
a small fraction of the cost of brute force methods as it
could quickly identify weak candidates and remove them
from the experiment based on statistical tests. It is
particularly useful when the evaluation process of each
algorithm contains a number of independent trials, which
could be regarded as random samples from the unknown
performance distribution. The major advantage of Racing
is that it is independent of the internal structure of those
algorithms, which means that it could be used to compare
algorithms belonging to significantly different categories
where no distance metric is available.

Note that, in parameter tuning, algorithm parameters are
chosen in advance and remain fixed during evolution.
Another class of approaches is called parameter control[7]
in which those parameters are subject to evolution as the
problem parameters are optimized. A typical example is
the self-adaptive standard deviation values in Evolution
Strategies [15]. The advantage is that different parameter
values may be needed in different stages of evolution in
order to achieve optimal performance. However, there are
still some exogenous parameters used to control those self-
adaptive parameters. Also, not all algorithm parameters
can be changed in this manner. Furthermore, finding the
optimal settings of EAs in different situations may also
provide valuable information for designing better
parameter control strategies.

The remainder of this paper is organized as follows.
Section 2 gives the details of two benchmark problems and
the Genetic Algorithm whose parameters are to be tuned.
Section 3 introduces the framework of Meta-EA and
Racing and shows how to combine these methods together.
Experimental results are presented in Section 4 and this
paper is concluded in Section 5.

2 Genetic Algorithms

A classical Genetic Algorithm [8, 11] is used in this paper,
which is specified in Figure 1 (i.e., there are some other
versions of GAs with more or less difference). Two parents
from the current population are selected at each time and
two offspring are generated through recombination of these
two parents with probability Pc (the crossover rate).
Otherwise, these two parents are kept unchanged and
copied to the mating pool. When the mating pool is full,
mutation is applied, which changes the value of each
variable with probability Pm. For variables of binary
problems, which are the case of this paper, mutation is
applied by flipping a bit from 0 to 1 and vice versa.
Finally, new individuals are evaluated and replace the old
population. If elitism is applied, the best individual found
so far in previous generations will be copied to the new
population, replacing a randomly chosen individual.

 Initialize and evaluate the population
 While stopping criteria not met
 While mating pool is not full
 Select two individuals
 Apply crossover with probability P

c

 Copy offspring to mating pool
 End While
 Apply mutation with probability P

m

 Evaluate new individuals
 Replace old population
 End While

Figure 1. The Framework of the Genetic Algorithm

Obviously, there are a number of parameters to be
specified in the above framework. The population size (P)
is a discrete parameter of high cardinality (i.e., it should be
a positive even number because individuals are generated
in pairs). It is well-known that a very small population may
result in premature convergence while a very large
population may result in a slow convergence rate. The
crossover rate Pc and mutation rate Pm are both continuous
variables within [0, 1]. These two values are important for
controlling the balance between exploration and
exploitation. The selection strategy (S) is a discrete
variable, which contains various candidates (e.g.,
Tournament Selection) combined with their corresponding
parameters (e.g., Tournament size). Note that it is also
possible to use two parameters with one specifying the
type and the other specifying the parameter. Please refer to
[4] for detailed analysis and comparison of various
selection strategies. Also, a discrete parameter (C) is
required to specify the type of crossover (e.g., one-point or
two-point). At last, a binary parameter (E) is used to
indicate whether elitism is used or not.

According to the above discussion, a GA could be fully
specified by a six-element tuple: <P, Pc, Pm, S, C, E>.
Among those algorithm parameters, some are continuous
(i.e., the population size could be regarded as a continuous
parameter during optimization due to its high cardinality
and then rounded up to the nearest feasible value) while
others are discrete, which creates a mixed-value
optimization problem. The feasible values of S, C & E are
given in Table 1.

For example, there are three selection strategies:
“Truncation”, “Tournament” and “Linear Ranking” and
there are also 5, 3 and 3 parameter values associated with
each of them respectively, creating 5+3+3=11 possible
selection strategies in total.

 Values

S

“Truncation” {0.1, 0.2, 0.3, 0.4, 0.5}

“Tournament” {2, 4, 6}

“Linear Ranking” {1.5, 1.8, 2.0}

C “One-Point”, “Two-Point”, “Uniform”

E 0 (without elitism), 1(with elitism)

Table 1. Feasible Values of S, C & E

Two well-known binary optimization problems are used
in this paper. The first test problem is the One-Max
problem whose fitness value is simply the number of 1s in
each individual. It has a very simple structure in that there
is no dependence among bits. Another test problem is the
HIFF (Hierarchical-if-and-only-if) problem[16], which is
much more challenging:

 1, if |B|=1
=)(Bf { }10,)()(==∀++ iiRL borbiifBBfBf

 otherwiseBfBf RL),()(+ (1)

 In Eq.1, B is a block of bits {b1, … , bn} and |B| is the
length of B (n). BL and BR are the left and right half-strings
respectively (i.e., the length of the string must be an integer
power of 2). This function regards the string as a binary
tree and recursively decomposes it into left and right sub-
strings. Each sub-string is a building block in a certain
level and if all the bits in the sub-string are of the same
value (i.e., all ones or all zeros), it is rewarded as the best
block in its level. In the HIFF problem, two different best
building blocks at one level can create a second best block
at the next level when they are combined together, which
makes it a difficult problem for GAs.

3 Meta-EA and Racing

3.1 Meta-EA
As discussed in Section 2, each GA corresponds to an
instance of the six-element parameter tuple and finding the
best parameter setting means finding the best value
assignment through searching in this 6D solution space.
Certainly, it is possible that two or more parameter settings
may produce very similar performance. In the Meta-EA
approach[1, 9], each element is treated as a tunable
variable and each individual contains all such variables and
thus represents a complete candidate GA. The fitness value
of each individual is evaluated by decoding it into its
corresponding GA and running this GA on the test
problem(s) for a number of trials. In fact, the only
difference between Meta-EAs and other EAs is that
individuals represent parameters of EAs in Meta-EAs
while they represent candidate solutions of the
optimization problem in EAs. In practice, the algorithm
used as the Meta-EA could be any EAs such as a GA [9] or
a specifically designed EA [1].

One of the major difficulties in applying this Meta-EA
approach is that some algorithm parameters are not
searchable in general. A common feature of numerous EAs
is that they all assume that the problem to be solved has
some kind of searchable structure. A searchable space
means that it is possible to measure the distance
(similarity) between any two candidates so that a sensible
search space (landscape) could be defined. In other words,
for any candidate, it should be possible to find out which
candidates are close to it and which candidates are far from
it. Otherwise, it would be very difficult to apply genetic
operators such as crossover and mutation. In this paper, S

is a typical example of such non-searchable parameters
(e.g., it is not easy to say whether Tournament Selection
with size 2 or Linear Ranking Selection with maximum
number of offspring 1.8 is closer to Truncation Selection
with selection ratio 0.3). Previously, this kind of
parameters are coded into binary strings in an arbitrary
way [9] or only mutation is applied on them, which
actually does pure random search[1].

Since random search is typically not an efficient and/or
reliable method, one solution is to, instead of searching,
use a brute force approach to enumerate all possibilities.
For example, when it comes to evaluating an individual,
which contains non-searchable parameters, it will first be
expanded to a set of individuals containing all possible
combinations of the values of those non-searchable
parameters (i.e., all these individuals are identical in terms
of other searchable parameters). All individuals are
evaluated and the highest fitness value is returned as the
fitness value of the original individual. The obvious
advantage is that this method could guarantee to find the
best values of non-searchable parameters, given the values
of other parameters. However, when the number and/or the
cardinality of the parameters are large, it could be a tedious
process to fully evaluate all possible algorithms. After all,
several trials are needed to get reliable results.

3.2 Racing
Racing [12, 13]is originally proposed to solve the model
selection problem in Machine Learning: given a set of data
points and a number of candidate learning algorithms
(which could include multiple versions of the same
algorithm with different, specified parameter values or
algorithms belonging to different classes), which algorithm
yields the minimum prediction error? In contrast to the
brute force method, which is to sequentially evaluate all
algorithms on all available data points and choose the best
performing algorithm, the Racing method investigates all
algorithms in parallel (See Figure 2).

Figure 2. The Framework of Racing

In each step, all algorithms are tested on a single
independently selected data point and their prediction
errors on that point are calculated. The mean predication
error of each algorithm on data points that have already
been seen is also maintained. This error, Eest, is an
estimation of the true prediction error Etrue over the entire
data set. As the algorithms are tested on more and more

Repeat the following steps until only one
candidate left or no unseen data point

• Randomly select a new data point

• Test all available candidates on it

• Record corresponding results

• Apply statistical test

• Eliminate candidates (if any) worse
than others at a predefined
significance level

data points, Eest approaches Etrue. The fundamental
mechanism of Racing attempts to identify and eliminate
weak candidates on the basis of Eest as early as possible to
minimize the number of unnecessary predication queries.
In other words, candidates compete with each other for
computational resources and only promising candidates
survive to undertake further testing.

Racing can be also applied to EAs [3, 18] due to the
similarity between the model selection problem in Machine
Learning and the task of parameter tuning in EAs. In each
case, the user is faced with a meta-optimization problem,
which is to efficiently find values for all of the adjustable
parameters of the model (algorithm) in order to produce
the best results. Furthermore, the performance of each
model (algorithm) needs to be evaluated based on a
number of data points (trials). Since the Racing approach
only utilizes the statistics of the results generated by a set
of algorithms instead of their internal structure, it is very
useful when the algorithm space is not searchable.

A closer look at Racing reveals that there is an inherent
lack of any mechanism of exploration. In fact, Racing
always starts with a fixed set of candidates and no other
candidates can be reached. From this point of view, it is
more like a selection method than a searching method. If
Racing is to be directly applied to the parameter tuning
task, the best algorithm must be within the initial set.
Otherwise, there is no hope to find it by Racing.

 Unfortunately, there is usually no such guarantee in
practice. One approach is to use an exhaustive initial set
containing all possible algorithms. However, for
algorithms with continuous parameters, the total number of
algorithm instances is numerous, which makes Racing
impractical. Certainly, it is possible to discretize those
continuous parameters but the accuracy of searching will
inevitably suffer, especially if the algorithm’s performance
is sensitive to the values of these parameters and there is
not enough prior knowledge about the value range.

3.3 Hybridization of Meta-EA and Racing
In Sections 3.1 & 3.2, we gave an introduction of two
different approaches to parameter tuning: Meta-EA and
Racing and pointed out their strengths and weaknesses.
The Meta-EA has global optimization ability but suffers
from the dilemma of non-searchable parameters. Note that
it is certainly possible to encode these parameters one way
or another but it is unlikely that the encoding may correctly
reflect the underlying structure. By contrast, Racing could
handle this issue without any difficulty but its performance
is strongly dependent on the initial set of candidates. It is
clear that the properties of these two approaches are
complimentary to each other and better performance might
by achieved by combining both approaches.

The general idea is to only encode those searchable
parameters into individuals to be evolved by the Meta-EA
(See Figure 3). At this stage, each individual does not
specify a complete GA. Instead, it corresponds to a set of
GAs sharing the same searchable parameters. Racing is
then applied to efficiently identify the best GA within each
set and its fitness value is returned as the fitness value of
the corresponding high-level individual.

Figure 3. The Framework of the Hybrid Approach

4 Experiments

4.1 The Effect of GA Paramters
In this section, some preliminary experiments were
conducted to demonstrate the effect of parameter setting
with regard to the performance of GAs. More specifically,
we focus on three points:

1. Different parameter settings may result in large
difference in performance on a single problem.

2. A parameter setting that is good for one test
problem may not be suitable for another one.

3. Dependences exist among GA parameters,
making it inappropriate to tune parameters
independently.

In order to demonstrate the first two points, two
parameters settings were chosen (Table 2), which were
different in selection strategy, crossover type and elitism.

 P Pc Pm S C E

A 50 0.8 0.01
“Truncation”

Ratio= 0.1
“Uniform” 0

B 50 0.8 0.01
“Tournament”

Size=2
“Two-Point” 1

Table 2. Parameter Settings A and B

The GA described in Section 2 was tested on two
maximization problems: the 100-bit One-Max problem and
the 32-bit HIFF problem with the above two parameter

Meta-EA

High-Level
Individuals

1st set of GAs Nth set of GAs

Best GA(1) Best GA(N)

Racing Racing

Fitness Value of
Nth Individual

Fitness Value of
1st Individual

settings. The number of fitness evaluations was set to
1000, allowing 20 generations in each trial (i.e., the GA
did not make any significant progress after 20 generations).
For each experiment configuration (i.e., parameter setting
+ test problem), 50 trials were conducted and the
distribution of the best solution in each trial is plotted in
Figure 4 in which the Y-axis represents the fitness values
(i.e., the global optimum value of 100-bit One-Max is 100
and the global optimum value of the 32-bit HIFF is 192).
The box-whisker plots shows the upper quartile, median
and lower quartile values of each distribution as well as the
extent of the rest data.

Figure 4. The Effect of Different Parameter Settings

In Figure 4, it is evident that parameter setting A
produced a much better result than parameter setting B on
the One-Max problem while the reverse is true on the
HIFF problem. This clearly demonstrates the importance
of parameter tuning in GAs and the necessity of doing
specific tuning with regard to different problems.

A direct implication of this result is that in empirical
studies of EAs, it is dangerous to establish any general
conclusion with regard to the performance of algorithms
on arbitrarily chosen test problems as well as arbitrarily
chosen algorithm parameters.

Dependences among algorithm parameters can be
demonstrated by the following experiments. Suppose that
the interaction between Pm and S is of interest.
Furthermore, suppose that Truncation Selection is in use
but the corresponding selection ratio is to be determined.
An incomplete algorithm specification is given by
<50, 0.8, ? , “Truncation” ?, “Two-Point”, 0> where “?”
represents the parameter to be investigated. For each
mutation level, a brute force method was used to find the
best selection ratio for the Truncation Selection. The test
problem was the 32-bit HIFF problem and 50 trials were
conducted for each experiment configuration.

Experimental results (i.e., mean value ± one standard
deviation) are summarized in Table 3 where the best
results are marked in bold. With a small mutation rate
0.01, the best performance was achieved with selection

ratio=0.5. By contrast, with a large mutation rate 0.20, the
optimum selection ratio was 0.1, which shows clearly the
correlation between the two algorithm parameters.

 S=0.1 S=0.3 S=0.5

Pm = 0.01 118.1±14.7 127.0±13.4 136.7±17.9

Pm = 0.20 104.4±9.1 96.2±9.1 92.6±8.5

Table 3. The Dependence between Pm and S

4.2 Racing vs. Brute Force
The core idea of the proposed hybrid approach is to use
Racing to conduct searching on parameters not directly
searchable. In this section, we empirically demonstrate the
reliability (i.e., whether Racing can identify the best
algorithms among a set of candidates) and efficiency (i.e.,
the number of trials conducted in Racing compared to the
number of trials that need to be conducted in the brute
force method) of Racing.

As mentioned in Section 2, there are six parameters to
be specified including three continuous parameters (i.e.,
population size is regarded as a continuous variable due to
its large cardinality). Although E is a binary variable, it is
also included into Racing with S and C so that the Meta-
EA only needs to handle a continuous optimization task.
As a result, the task of Racing is, for each high-level
individual, to find the best GA out of 11×3×2=66
candidates as efficiently as possible. Note that even if only
one algorithm is left during Racing, it will still finish all 50
trials to have an accurate measure of its performance. In
this paper, the Friedman test [5] was used in Racing with
significance level α=0.10.

Four individuals were chosen that were different from
each other in terms of P/Pc/Pm. For each individual, Racing
and the brute force method were applied to find the best
performing GA and its performance was returned as the
fitness value. The test problem was the 100-bit One-Max
problem and the number of evaluations was 500. In Table
4, the fitness values assigned by Racing and the brute force
method are presented along with the ratio of the cost of
Racing to the cost of the brute force method, measured by
the number of trials actually conducted. It is clear that
Racing was able to find GAs with similar quality as the
brute force method but at a small fraction of its cost (i.e.,
the results of both methods could vary slightly due to the
randomness of GAs). Certainly, Racing itself involves
additional computational cost (e.g., statistical tests) but it is
usually trivial compared to the cost of GA experiments.

Fitness Value
P Pc Pm

Brute Force Racing

Cost
Ratio

50 0.8 0.01 87.7 87.6 0.0833

50 0.8 0.20 73.7 73.4 0.1142

20 0.8 0.01 92.0 92.0 0.1179

20 0.5 0.01 90.0 89.3 0.1042

Table 4. Racing vs. Brute Force on One-Max

In order to have an intuitive understanding of the
efficiency of Racing, a single Racing trial was picked up
and the number of remaining algorithms at each step is
presented in Figure 5. It shows that most of candidate
algorithms were eliminated from the experiment and
received no further testing after less than 10 trials, which
saved a significant amount of computational effort. More
specifically, the cost of the brute force method is equal to
the whole box area (i.e., total number of algorithms ×
number of trials) while the cost of Racing is indicated by
the much smaller area under the curve.

Figure 5. The Efficiency of Racing on One-Max

Similar experiments were also conducted on the 16-bit
HIFF problem. Although the reliability of Racing was still
very good, its efficiency generally decreased (i.e., it
usually required 30% to 40% of the cost of the brute force
method). It has been demonstrated that the efficiency of
Racing is influenced by the performance distribution of
those candidates with regard to the test problem[18]. The
most favourable situation is that the performance of all
algorithms is consistent across independent trials and the
best algorithm is significantly better than others so that the
majority of candidate algorithms could be quickly
eliminated in early stages.

In practice, the effectiveness of Racing depends on a
variety of factors. For example, the performance criterion
in our work is the fitness of the best individual found and if
all algorithms are allowed a large number of generations, it
is possible that the performance of these algorithms may
all be very good and thus similar to each other, which
makes it a difficult task for Racing to distinguish them. On
the other hand, if the problem is too difficult, all
algorithms may perform very badly and it will also be
difficult to distinguish them.

The property of HIFF may also account for the low
efficiency. In the 100-bit One-Max problem, the possible
fitness values are uniformly distributed within the range of
[0, 100] with step size 1. By contrast, in the 16-bit HIFF
problem, there are only 22 distinct values and also some
big gaps among these values (e.g., the global optimum is
valued at 80 while the next best value is 64). This means

that in the 100-bit One-Max problem, algorithms could be
characterized more precisely than in the 16-bit HIFF
problem and thus may be more easily distinguished.

4.3 Meta-EA+Racing
In this section, the proposed hybrid approach was used to
optimize the parameters of a GA on the 100-bit One-Max
problem. There exist a number of EAs that could
potentially be used as the Meta-EA. In this paper, a simple
(µ+λ) ES [15] with diagonal Gaussian distribution was
used due to its simplicity and capability of working with a
small population. In our experiments, the population size
was set to 20 (i.e., µ=λ=20) and the Meta-EA was allowed
to run for up to 30 generations. The boundaries and
standard deviations for the three GA parameters are listed
in Table 5. These values were chosen based on some
general knowledge without any specific tuning. Other
settings were the same as in Section 4.2.

Note that, for some values of the population size of the
GA, it is possible that, given the fixed number of fitness
evaluations, the number of generations may not be an
integer. The solution adopted here was to increase the
population size of the final generation to accommodate
those extra individuals to maintain the same number of
fitness evaluations among all candidates.

 Range Standard Deviation

P [20, 100] 5

Pc [0, 1] 0.05

Pm [0, 0.2] 0.02

Table 5. Definition of Search Space and Parameters of ES

The performance of the best GA and the mean
performance of all 20 GAs in each generation are shown in
Figure 6. Within the first 20 generations, the performance
of the best GAs found increased from 89.2 to 93.98. The
mean performance also increased from 78.23 to 93.38
during this period. A quick look into the final population
shows that all individuals were very similar to each other
and the Meta-EA has already converged.

 Among those GAs in the final population, they all
employed either Tournament Selection (size=6) or
Truncation Selection (ratio=0.1). This indicates that it is
preferable to have strong selection pressure to favour those
promising individuals. Also, Uniform crossover dominated
the crossover operator. Finally, elitism did not offer any
significant benefit in this case study. Note that all GAs had
very similar fitness values and due to their stochastic
behaviour, it is not reasonable to regard any one of them as
the best GA. The evolution process of the GA’s parameters
(i.e., averaged over the population in each generation) is
presented in Figures 7-9 giving a clear indication of the
advantage of small population size, large crossover rate
and small mutation rate.

The cost of this hybrid approach was also calculated by
adding up the relative cost of Racing in evaluating each
Meta-EA individual. The total cost of Racing was 72.30,

giving an average cost of 72.30/ (20×30) =0.1205, which
shows that Racing only required 12.05% of the effort
required by the brute force method (i.e., this was at the
similar level as those examples in Table 4).

Figure 6. The Mean and Best Performance of GAs

Figure 7. The Evolution Process of Population Size

Figure 8. The Evolution Process of Crossover Rate

Figure 9. The Evolution Process of Mutation Rate

5 Conclusion

The major motivation of this paper is to investigate the
issue of parameter tuning in GAs as well as other EAs. The
traditional Meta-EA approach and a relatively new
statistical Racing approach were analysed and their
advantages and disadvantages were also discussed. A
novel method was proposed by combining these two
approaches in order to exploit their unique strengths while
avoiding some inherent weaknesses. The core idea is to use
the Meta-EA approach to optimize those tunable algorithm
parameters while Racing is used to identify the best
algorithm from a set of candidates different from each
other only in terms of those non-searchable parameters. By
doing so, this new method could enjoy both the global
optimization ability of the Meta-EA and Racing’s ability of
handling non-searchable parameters.

A simple ES in combination with Racing was used to
tune a GA with six parameters on the One-Max problem.
Note that the focus here is not to argue which EA should
be used as the Meta-EA. Instead, we intend to highlight the
advantage of the hybrid approach as well as the efficiency
of Racing. The estimated running time of the parameter
tuning task is more than 70 hours on a P III 800 MHz PC
without Racing (i.e., Meta-EA + Brute Force) while it
actually only took about 9 hours with the help of Racing
(i.e., Meta-EA + Racing).

 Certainly, we are also aware that the parameter tuning
of EAs is still a very time-consuming process especially for
complex test problems, which prevents it from being
widely applied in practice. One possible direction is to
look for more effective statistical methods that could
achieve better efficiency and reliability. After all, Racing is
a general framework, which allows different techniques to
be plugged into it. On the other hand, if the search space is
known to be unimodal or a good starting point could be
provided, classical local optimization methods may
achieve faster convergence speed compared to Meta-EAs.

Acknowledgement

This work was supported by an Australian Postgraduate
Award granted to Bo Yuan.

References

[1] Bäck, T. Evolutionary algorithms in theory and
practice. Oxford University Press, New York, 1996.

[2] Bartz-Beielstein, T. Experimental Analysis of
Evolution Strategies - Overview and Comprehensive
Introduction. Technical Report 157/03, University of
Dortmund, 2003.

[3] Birattari, M., Stutzle, T., Paquete, L. and Varrentrapp,
K. A Racing Algorithm for Configuring
Metaheuristics. In Proceedings of Genetic and
Evolutionary Computation Conference (GECCO
2002), 2002, 11-18.

[4] Blickle, T. and Thiele, L. A Comparison of Selection
Schemes used in Genetic Algorithms. Technical
Report Nr. 11, Swiss Federal Institute of Technology,
1995.

[5] Conover, W.J. Practical Nonparametric Statistics.
John Wiley & Sons, Inc., 1999.

[6] De Jong, K. The analysis of the behavior of a class of
genetic adaptive systems. PhD Thesis, University of
Michigan, 1975.

[7] Eiben, A.E., Hinterding, R. and Michalewicz, Z.
Parameter Control in Evolutionary Algorithms. IEEE
Transactions on Evolutionary Computation, 3, 2
(1999), 124-141.

[8] Goldberg, D.E. Genetic Algorithms in search,
optimization, and machine learning. Reading, Mass. :
Addison-Wesley, 1989.

[9] Grefenstette, J.J. Optimization of Control Parameters
for Genetic Algorithms. IEEE Transactions on
System, Man, And Cybernetics, 16, 1 (1986), 122-128.

[10] Hart, W.E. and Belew, R.K. Optimizing an Arbitrary
Function is Hard for the Genetic Algorithm. In
Proceedings of the Fourth International Conference
on Genetic Algorithms, 1991, 190-195.

[11] Holland, J.H. Adaptation in Natural and Artificial
Systems. University of Michigan, 1975.

[12] Maron, O. and Moore, A.W. Hoeffding Races:
Accelerating Model Selection Search for
Classification and Function Approximation. In
Proceedings of Advances in Neural Information
Processing Systems 6, 1994, 59-66.

[13] Maron, O. and Moore, A.W. The Racing Algorithm:
Model Selection for Lazy Learners. Artificial
Intelligence Review, 11 (1997), 193-225.

[14] Montgomery, D.C. Design and analysis of
experiments. John Wiley & Sons, 1991.

[15] Schwefel, H.-P. Evolution and Optimum Seeking.
Wiley, New York, 1995.

[16] Watson, R.A. and Pollack, J.B. Hierarchically-
Consistent Test Problems for Genetic Algorithms. In
Proceedings of Congress on Evolutionary
Computation, 1999, 1406-1413.

[17] Wolpert, D.H. and Macready, W.G. No Free Lunch
Theorems for Optimization. IEEE Transactions on
Evolutionary Computation, 1, 1 (1997), 67-82.

[18] Yuan, B. and Gallagher, M. Statistical Racing
Techniques for Improved Empirical Evaluation of
Evolutionary Algorithms. In Proceedings of the 8th
International Conference on Parallel Problem
Solving from Nature, 2004, 172-181.

