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Abstract- Choosing the best parameter setting is a well-
known important and challenging task in Evolutionary 
Algorithms (EAs). As one of the earliest parameter 
tuning techniques, the Meta-EA approach regards each 
parameter as a variable and the performance of 
algorithm as the fitness value and conducts searching 
on this landscape using various genetic operators. 
However, there are some inherent issues in this 
method. For example, some algorithm parameters are 
generally not searchable because it is difficult to define 
any sensible distance metric on them. In this paper, a 
novel approach is proposed by combining the Meta-EA 
approach with a method called Racing, which is based 
on the statistical analysis of algorithm performance 
with different parameter settings. A series of 
experiments are conducted to show the reliability and 
efficiency of this hybrid approach in tuning Genetic 
Algorithms (GAs) on two benchmark problems. 

1 Introduction 

Evolutionary Algorithms (EAs) refer to a broad class of 
optimization algorithms under a unified framework. The 
total number of algorithms and their variations is very 
large and in practice a number of choices such as the 
crossover rate, the type of crossover and the population 
size etc. must be made in advance in order to fully specify 
a complete EA. The importance of these choices is at least 
threefold. Firstly, EAs are not completely parameter robust 
and EAs with inappropriate choices may not be able to 
solve problems effectively[10]. Secondly, when two or 
more EAs are compared, arbitrarily specified parameters 
may make the comparison unfair and conclusions 
misleading. Finally, finding the optimal setting may be also 
helpful for better understanding the mechanisms of EAs. 

There has been a large amount work dedicated to 
finding the “optimal” parameters of EAs [6, 7]. However, 
it has shown that this kind of optimal setting does not exist 
in general. In fact, for different problems, there are 
different optimal specifications[17]. If each algorithm 
parameter is regarded as a variable and the performance of 
the EA is regarded as the objective value, there is a 
performance landscape of EAs on each problem and 
finding the best parameter setting simply means finding the 
global optimum. 

There are a number of possible approaches to selecting 
algorithm parameters based on classical statistical methods 
such as Response Surfaces and Regression[14]. One major 
advantage is that by explicitly building a model of the 
relationship between algorithm parameters and the 
algorithm’s performance, a deep insight into the interaction 
among parameters can be achieved. However, these 
methods are not efficient in terms of searching complex 
performance landscapes because in order to build a full 
model involving many variables, an extremely large 
number of sampling points are needed. On the other hand, 
building a local model using a small number of sampling 
points is equal to doing local search and may drive the 
tuning process to a local optimum. Please refer to [2]for 
detailed introduction and references. 

An alternative approach to parameter selection is to 
employ another EA, called a Meta-EA[1, 9], to conduct 
searching because EAs are believed to be able to search 
complex landscapes efficiently. Traditionally, in the Meta-
EA level, each individual contains all the necessary 
algorithm parameters and thus fully specifies an EA. The 
fitness of each individual is evaluated by running the EA 
on some test problems for a few trials. Results have shown 
that this Meta-EA approach could successfully find 
algorithm parameters that are better than default values 
recommended in the literature. 

However, there are also some issues with the Meta-EA 
approach. Firstly, not all algorithm parameters are 
searchable by EAs. For example, suppose that there is a 
variable specifying the type of selection. Since it is not 
obvious how to define a reasonable distance metric along 
this dimension (i.e., the distance between each pair of 
selection operators), it may be very difficult to design 
appropriate search operators other than uniform/random 
search. Secondly, there may be also some variables that 
only require specification in certain situations. For 
example, suppose that there is a variable specifying the 
tournament size in Tournament Selection. However, when 
the current selection method is Truncation Selection, this 
variable is not applicable. In other words, the 
representation itself is not very efficient. Finally, this 
Meta-EA approach is usually very time-consuming 
because in order to evaluate each individual, the 
corresponding EA must be run for a large number of trials 
with different initial conditions due to the stochastic 
behaviour of these algorithms. 



In this paper, we address the above issues by combining 
a statistical method called Racing [13] with the Meta-EA 
approach. Racing is originally proposed as a searching 
method to efficiently identify the best performing learning 
algorithm from a set of candidates and has also been 
applied in evaluating EAs[3, 18]. Usually, it only requires 
a small fraction of the cost of brute force methods as it 
could quickly identify weak candidates and remove them 
from the experiment based on statistical tests. It is 
particularly useful when the evaluation process of each 
algorithm contains a number of independent trials, which 
could be regarded as random samples from the unknown 
performance distribution. The major advantage of Racing 
is that it is independent of the internal structure of those 
algorithms, which means that it could be used to compare 
algorithms belonging to significantly different categories 
where no distance metric is available. 

Note that, in parameter tuning, algorithm parameters are 
chosen in advance and remain fixed during evolution. 
Another class of approaches is called parameter control[7] 
in which those parameters are subject to evolution as the 
problem parameters are optimized. A typical example is 
the self-adaptive standard deviation values in Evolution 
Strategies [15]. The advantage is that different parameter 
values may be needed in different stages of evolution in 
order to achieve optimal performance. However, there are 
still some exogenous parameters used to control those self-
adaptive parameters. Also, not all algorithm parameters 
can be changed in this manner. Furthermore, finding the 
optimal settings of EAs in different situations may also 
provide valuable information for designing better 
parameter control strategies. 

The remainder of this paper is organized as follows. 
Section 2 gives the details of two benchmark problems and 
the Genetic Algorithm whose parameters are to be tuned. 
Section 3 introduces the framework of Meta-EA and 
Racing and shows how to combine these methods together. 
Experimental results are presented in Section 4 and this 
paper is concluded in Section 5. 

2 Genetic Algorithms 

A classical Genetic Algorithm [8, 11] is used in this paper, 
which is specified in Figure 1 (i.e., there are some other 
versions of GAs with more or less difference). Two parents 
from the current population are selected at each time and 
two offspring are generated through recombination of these 
two parents with probability Pc (the crossover rate). 
Otherwise, these two parents are kept unchanged and 
copied to the mating pool. When the mating pool is full, 
mutation is applied, which changes the value of each 
variable with probability Pm. For variables of binary 
problems, which are the case of this paper, mutation is 
applied by flipping a bit from 0 to 1 and vice versa. 
Finally, new individuals are evaluated and replace the old 
population. If elitism is applied, the best individual found 
so far in previous generations will be copied to the new 
population, replacing a randomly chosen individual. 

 
  Initialize and evaluate the population 
   While stopping criteria not met 
     While mating pool is not full 
        Select two individuals 
        Apply crossover with probability P

c
 

        Copy offspring to mating pool 
     End While 
     Apply mutation with probability P

m
 

     Evaluate new individuals 
     Replace old population 
   End While 

Figure 1. The Framework of the Genetic Algorithm 

Obviously, there are a number of parameters to be 
specified in the above framework. The population size (P) 
is a discrete parameter of high cardinality (i.e., it should be 
a positive even number because individuals are generated 
in pairs). It is well-known that a very small population may 
result in premature convergence while a very large 
population may result in a slow convergence rate. The 
crossover rate Pc and mutation rate Pm are both continuous 
variables within [0, 1]. These two values are important for 
controlling the balance between exploration and 
exploitation. The selection strategy (S) is a discrete 
variable, which contains various candidates (e.g., 
Tournament Selection) combined with their corresponding 
parameters (e.g., Tournament size). Note that it is also 
possible to use two parameters with one specifying the 
type and the other specifying the parameter. Please refer to 
[4] for detailed analysis and comparison of various 
selection strategies. Also, a discrete parameter (C) is 
required to specify the type of crossover (e.g., one-point or 
two-point). At last, a binary parameter (E) is used to 
indicate whether elitism is used or not. 

According to the above discussion, a GA could be fully 
specified by a six-element tuple: <P, Pc, Pm, S, C, E>. 
Among those algorithm parameters, some are continuous 
(i.e., the population size could be regarded as a continuous 
parameter during optimization due to its high cardinality 
and then rounded up to the nearest feasible value) while 
others are discrete, which creates a mixed-value 
optimization problem. The feasible values of S, C & E are 
given in Table 1.  

For example, there are three selection strategies: 
“Truncation”, “Tournament” and “Linear Ranking” and 
there are also 5, 3 and 3 parameter values associated with 
each of them respectively, creating 5+3+3=11 possible 
selection strategies in total. 

 
 Values 

 

S 

“Truncation” {0.1, 0.2, 0.3, 0.4, 0.5} 

“Tournament” {2, 4, 6} 

“Linear Ranking” {1.5, 1.8, 2.0} 

C “One-Point”, “Two-Point”, “Uniform” 

E 0 (without elitism), 1(with elitism) 

 
Table 1. Feasible Values of S, C & E 



Two well-known binary optimization problems are used 
in this paper. The first test problem is the One-Max 
problem whose fitness value is simply the number of 1s in 
each individual. It has a very simple structure in that there 
is no dependence among bits. Another test problem is the 
HIFF (Hierarchical-if-and-only-if) problem[16], which is 
much more challenging: 

                     1,                                if  |B|=1 
=)( Bf      { }10,)()( ==∀++ iiRL borbiifBBfBf  

                    otherwiseBfBf RL ),()( +                  (1) 

 In Eq.1, B is a block of bits {b1, … , bn} and |B| is the 
length of B (n). BL and BR are the left and right half-strings 
respectively (i.e., the length of the string must be an integer 
power of 2). This function regards the string as a binary 
tree and recursively decomposes it into left and right sub-
strings. Each sub-string is a building block in a certain 
level and if all the bits in the sub-string are of the same 
value (i.e., all ones or all zeros), it is rewarded as the best 
block in its level. In the HIFF problem, two different best 
building blocks at one level can create a second best block 
at the next level when they are combined together, which 
makes it a difficult problem for GAs. 

3 Meta-EA and Racing 

3.1 Meta-EA 
As discussed in Section 2, each GA corresponds to an 
instance of the six-element parameter tuple and finding the 
best parameter setting means finding the best value 
assignment through searching in this 6D solution space. 
Certainly, it is possible that two or more parameter settings 
may produce very similar performance. In the Meta-EA 
approach[1, 9], each element is treated as a tunable 
variable and each individual contains all such variables and 
thus represents a complete candidate GA. The fitness value 
of each individual is evaluated by decoding it into its 
corresponding GA and running this GA on the test 
problem(s) for a number of trials. In fact, the only 
difference between Meta-EAs and other EAs is that 
individuals represent parameters of EAs in Meta-EAs 
while they represent candidate solutions of the 
optimization problem in EAs. In practice, the algorithm 
used as the Meta-EA could be any EAs such as a GA [9] or 
a specifically designed EA [1].  

One of the major difficulties in applying this Meta-EA 
approach is that some algorithm parameters are not 
searchable in general. A common feature of numerous EAs 
is that they all assume that the problem to be solved has 
some kind of searchable structure. A searchable space 
means that it is possible to measure the distance 
(similarity) between any two candidates so that a sensible 
search space (landscape) could be defined. In other words, 
for any candidate, it should be possible to find out which 
candidates are close to it and which candidates are far from 
it. Otherwise, it would be very difficult to apply genetic 
operators such as crossover and mutation. In this paper, S 

is a typical example of such non-searchable parameters 
(e.g., it is not easy to say whether Tournament Selection 
with size 2 or Linear Ranking Selection with maximum 
number of offspring 1.8 is closer to Truncation Selection 
with selection ratio 0.3). Previously, this kind of 
parameters are coded into binary strings in an arbitrary 
way [9] or only mutation is applied on them, which 
actually does pure random search[1].  

Since random search is typically not an efficient and/or 
reliable method, one solution is to, instead of searching, 
use a brute force approach to enumerate all possibilities. 
For example, when it comes to evaluating an individual, 
which contains non-searchable parameters, it will first be 
expanded to a set of individuals containing all possible 
combinations of the values of those non-searchable 
parameters (i.e., all these individuals are identical in terms 
of other searchable parameters). All individuals are 
evaluated and the highest fitness value is returned as the 
fitness value of the original individual. The obvious 
advantage is that this method could guarantee to find the 
best values of non-searchable parameters, given the values 
of other parameters. However, when the number and/or the 
cardinality of the parameters are large, it could be a tedious 
process to fully evaluate all possible algorithms. After all, 
several trials are needed to get reliable results. 

3.2 Racing 
Racing [12, 13]is originally proposed to solve the model 
selection problem in Machine Learning: given a set of data 
points and a number of candidate learning algorithms 
(which could include multiple versions of the same 
algorithm with different, specified parameter values or 
algorithms belonging to different classes), which algorithm 
yields the minimum prediction error? In contrast to the 
brute force method, which is to sequentially evaluate all 
algorithms on all available data points and choose the best 
performing algorithm, the Racing method investigates all 
algorithms in parallel (See Figure 2).  
 
 
 
 
 

 

 

Figure 2. The Framework of Racing 

In each step, all algorithms are tested on a single 
independently selected data point and their prediction 
errors on that point are calculated. The mean predication 
error of each algorithm on data points that have already 
been seen is also maintained. This error, Eest, is an 
estimation of the true prediction error Etrue over the entire 
data set. As the algorithms are tested on more and more 

Repeat the following steps until only one
candidate left or no unseen data point 
 

• Randomly select a new data point 

• Test all available candidates on it 

• Record corresponding results 

• Apply statistical test 

• Eliminate candidates (if any) worse 
than others at a predefined 
significance level 



data points, Eest approaches Etrue. The fundamental 
mechanism of Racing attempts to identify and eliminate 
weak candidates on the basis of Eest as early as possible to 
minimize the number of unnecessary predication queries. 
In other words, candidates compete with each other for 
computational resources and only promising candidates 
survive to undertake further testing.  

Racing can be also applied to EAs [3, 18] due to the 
similarity between the model selection problem in Machine 
Learning and the task of parameter tuning in EAs. In each 
case, the user is faced with a meta-optimization problem, 
which is to efficiently find values for all of the adjustable 
parameters of the model (algorithm) in order to produce 
the best results. Furthermore, the performance of each 
model (algorithm) needs to be evaluated based on a 
number of data points (trials). Since the Racing approach 
only utilizes the statistics of the results generated by a set 
of algorithms instead of their internal structure, it is very 
useful when the algorithm space is not searchable. 

A closer look at Racing reveals that there is an inherent 
lack of any mechanism of exploration. In fact, Racing 
always starts with a fixed set of candidates and no other 
candidates can be reached. From this point of view, it is 
more like a selection method than a searching method. If 
Racing is to be directly applied to the parameter tuning 
task, the best algorithm must be within the initial set. 
Otherwise, there is no hope to find it by Racing. 

 Unfortunately, there is usually no such guarantee in 
practice. One approach is to use an exhaustive initial set 
containing all possible algorithms. However, for 
algorithms with continuous parameters, the total number of 
algorithm instances is numerous, which makes Racing 
impractical. Certainly, it is possible to discretize those 
continuous parameters but the accuracy of searching will 
inevitably suffer, especially if the algorithm’s performance 
is sensitive to the values of these parameters and there is 
not enough prior knowledge about the value range. 

3.3 Hybridization of Meta-EA and Racing 
In Sections 3.1 & 3.2, we gave an introduction of two 
different approaches to parameter tuning: Meta-EA and 
Racing and pointed out their strengths and weaknesses. 
The Meta-EA has global optimization ability but suffers 
from the dilemma of non-searchable parameters. Note that 
it is certainly possible to encode these parameters one way 
or another but it is unlikely that the encoding may correctly 
reflect the underlying structure. By contrast, Racing could 
handle this issue without any difficulty but its performance 
is strongly dependent on the initial set of candidates. It is 
clear that the properties of these two approaches are 
complimentary to each other and better performance might 
by achieved by combining both approaches. 

The general idea is to only encode those searchable 
parameters into individuals to be evolved by the Meta-EA 
(See Figure 3). At this stage, each individual does not 
specify a complete GA. Instead, it corresponds to a set of 
GAs sharing the same searchable parameters. Racing is 
then applied to efficiently identify the best GA within each 
set and its fitness value is returned as the fitness value of 
the corresponding high-level individual.  

 

Figure 3. The Framework of the Hybrid Approach 

4 Experiments 

4.1 The Effect of GA Paramters 
In this section, some preliminary experiments were 
conducted to demonstrate the effect of parameter setting 
with regard to the performance of GAs. More specifically, 
we focus on three points: 
 

1. Different parameter settings may result in large 
difference in performance on a single problem. 

2. A parameter setting that is good for one test 
problem may not be suitable for another one. 

3. Dependences exist among GA parameters, 
making it inappropriate to tune parameters 
independently. 

In order to demonstrate the first two points, two 
parameters settings were chosen (Table 2), which were 
different in selection strategy, crossover type and elitism.  

 
 P Pc Pm S C E 

A 50 0.8 0.01 
“Truncation” 

Ratio= 0.1 
“Uniform” 0 

B 50 0.8 0.01 
“Tournament” 

Size=2 
“Two-Point” 1 

Table 2. Parameter Settings A and B 

The GA described in Section 2 was tested on two 
maximization problems: the 100-bit One-Max problem and 
the 32-bit HIFF problem with the above two parameter 

Meta-EA 

High-Level 
Individuals 

1st set of GAs Nth set of GAs 

Best GA(1) Best GA(N) 

Racing Racing 

Fitness Value of 
Nth Individual 

Fitness Value of 
1st Individual 



settings. The number of fitness evaluations was set to 
1000, allowing 20 generations in each trial (i.e., the GA 
did not make any significant progress after 20 generations). 
For each experiment configuration (i.e., parameter setting 
+ test problem), 50 trials were conducted and the 
distribution of the best solution in each trial is plotted in 
Figure 4 in which the Y-axis represents the fitness values 
(i.e., the global optimum value of 100-bit One-Max is 100 
and the global optimum value of the 32-bit HIFF is 192). 
The box-whisker plots shows the upper quartile, median 
and lower quartile values of each distribution as well as the 
extent of the rest data. 

 

Figure 4. The Effect of Different Parameter Settings 

In Figure 4, it is evident that parameter setting A 
produced a much better result than parameter setting B on 
the One-Max problem while the reverse is true on the 
HIFF problem. This clearly demonstrates the importance 
of parameter tuning in GAs and the necessity of doing 
specific tuning with regard to different problems.  

A direct implication of this result is that in empirical 
studies of EAs, it is dangerous to establish any general 
conclusion with regard to the performance of algorithms 
on arbitrarily chosen test problems as well as arbitrarily 
chosen algorithm parameters. 

Dependences among algorithm parameters can be 
demonstrated by the following experiments. Suppose that 
the interaction between Pm and S is of interest. 
Furthermore, suppose that Truncation Selection is in use 
but the corresponding selection ratio is to be determined. 
An incomplete algorithm specification is given by                         
<50, 0.8, ? , “Truncation” ?, “Two-Point”, 0> where “?” 
represents the parameter to be investigated. For each 
mutation level, a brute force method was used to find the 
best selection ratio for the Truncation Selection. The test 
problem was the 32-bit HIFF problem and 50 trials were 
conducted for each experiment configuration. 

Experimental results (i.e., mean value ± one standard 
deviation) are summarized in Table 3 where the best 
results are marked in bold. With a small mutation rate 
0.01, the best performance was achieved with selection 

ratio=0.5. By contrast, with a large mutation rate 0.20, the 
optimum selection ratio was 0.1, which shows clearly the 
correlation between the two algorithm parameters.  

 S=0.1 S=0.3 S=0.5 

Pm = 0.01 118.1±14.7 127.0±13.4 136.7±17.9 

Pm = 0.20 104.4±9.1 96.2±9.1 92.6±8.5 

Table 3. The Dependence between Pm and S 

4.2 Racing vs. Brute Force 
The core idea of the proposed hybrid approach is to use 
Racing to conduct searching on parameters not directly 
searchable. In this section, we empirically demonstrate the 
reliability (i.e., whether Racing can identify the best 
algorithms among a set of candidates) and efficiency (i.e., 
the number of trials conducted in Racing compared to the 
number of trials that need to be conducted in the brute 
force method) of Racing.  

As mentioned in Section 2, there are six parameters to 
be specified including three continuous parameters (i.e., 
population size is regarded as a continuous variable due to 
its large cardinality). Although E is a binary variable, it is 
also included into Racing with S and C so that the Meta-
EA only needs to handle a continuous optimization task. 
As a result, the task of Racing is, for each high-level 
individual, to find the best GA out of 11×3×2=66 
candidates as efficiently as possible. Note that even if only 
one algorithm is left during Racing, it will still finish all 50 
trials to have an accurate measure of its performance. In 
this paper, the Friedman test [5] was used in Racing with 
significance level α=0.10. 

Four individuals were chosen that were different from 
each other in terms of P/Pc/Pm. For each individual, Racing 
and the brute force method were applied to find the best 
performing GA and its performance was returned as the 
fitness value. The test problem was the 100-bit One-Max 
problem and the number of evaluations was 500. In Table 
4, the fitness values assigned by Racing and the brute force 
method are presented along with the ratio of the cost of 
Racing to the cost of the brute force method, measured by 
the number of trials actually conducted. It is clear that 
Racing was able to find GAs with similar quality as the 
brute force method but at a small fraction of its cost (i.e., 
the results of both methods could vary slightly due to the 
randomness of GAs). Certainly, Racing itself involves 
additional computational cost (e.g., statistical tests) but it is 
usually trivial compared to the cost of GA experiments. 

Fitness Value 
P Pc Pm 

Brute Force Racing 

Cost 
Ratio 

50 0.8 0.01 87.7 87.6 0.0833 

50 0.8 0.20 73.7 73.4 0.1142 

20 0.8 0.01 92.0 92.0 0.1179 

20 0.5 0.01 90.0 89.3 0.1042 

Table 4. Racing vs. Brute Force on One-Max 



In order to have an intuitive understanding of the 
efficiency of Racing, a single Racing trial was picked up 
and the number of remaining algorithms at each step is 
presented in Figure 5. It shows that most of candidate 
algorithms were eliminated from the experiment and 
received no further testing after less than 10 trials, which 
saved a significant amount of computational effort. More 
specifically, the cost of the brute force method is equal to 
the whole box area (i.e., total number of algorithms × 
number of trials) while the cost of Racing is indicated by 
the much smaller area under the curve. 

 

Figure 5. The Efficiency of Racing on One-Max 

Similar experiments were also conducted on the 16-bit 
HIFF problem. Although the reliability of Racing was still 
very good, its efficiency generally decreased (i.e., it 
usually required 30% to 40% of the cost of the brute force 
method). It has been demonstrated that the efficiency of 
Racing is influenced by the performance distribution of 
those candidates with regard to the test problem[18]. The 
most favourable situation is that the performance of all 
algorithms is consistent across independent trials and the 
best algorithm is significantly better than others so that the 
majority of candidate algorithms could be quickly 
eliminated in early stages.  

In practice, the effectiveness of Racing depends on a 
variety of factors. For example, the performance criterion 
in our work is the fitness of the best individual found and if 
all algorithms are allowed a large number of generations, it 
is possible that the performance of these algorithms may 
all be very good and thus similar to each other, which 
makes it a difficult task for Racing to distinguish them. On 
the other hand, if the problem is too difficult, all 
algorithms may perform very badly and it will also be 
difficult to distinguish them. 

The property of HIFF may also account for the low 
efficiency. In the 100-bit One-Max problem, the possible 
fitness values are uniformly distributed within the range of 
[0, 100] with step size 1. By contrast, in the 16-bit HIFF 
problem, there are only 22 distinct values and also some 
big gaps among these values (e.g., the global optimum is 
valued at 80 while the next best value is 64). This means 

that in the 100-bit One-Max problem, algorithms could be 
characterized more precisely than in the 16-bit HIFF 
problem and thus may be more easily distinguished.  

4.3 Meta-EA+Racing 
In this section, the proposed hybrid approach was used to 
optimize the parameters of a GA on the 100-bit One-Max 
problem. There exist a number of EAs that could 
potentially be used as the Meta-EA. In this paper, a simple 
(µ+λ) ES [15] with diagonal Gaussian distribution was 
used due to its simplicity and capability of working with a 
small population. In our experiments, the population size 
was set to 20 (i.e., µ=λ=20) and the Meta-EA was allowed 
to run for up to 30 generations. The boundaries and 
standard deviations for the three GA parameters are listed 
in Table 5. These values were chosen based on some 
general knowledge without any specific tuning. Other 
settings were the same as in Section 4.2. 

Note that, for some values of the population size of the 
GA, it is possible that, given the fixed number of fitness 
evaluations, the number of generations may not be an 
integer. The solution adopted here was to increase the 
population size of the final generation to accommodate 
those extra individuals to maintain the same number of 
fitness evaluations among all candidates. 

 
 Range Standard Deviation 

P  [20, 100] 5 

Pc [0, 1] 0.05 

Pm [0, 0.2] 0.02 

Table 5. Definition of Search Space and Parameters of ES 

The performance of the best GA and the mean 
performance of all 20 GAs in each generation are shown in 
Figure 6. Within the first 20 generations, the performance 
of the best GAs found increased from 89.2 to 93.98. The 
mean performance also increased from 78.23 to 93.38 
during this period. A quick look into the final population 
shows that all individuals were very similar to each other 
and the Meta-EA has already converged. 

 Among those GAs in the final population, they all 
employed either Tournament Selection (size=6) or 
Truncation Selection (ratio=0.1).  This indicates that it is 
preferable to have strong selection pressure to favour those 
promising individuals. Also, Uniform crossover dominated 
the crossover operator. Finally, elitism did not offer any 
significant benefit in this case study. Note that all GAs had 
very similar fitness values and due to their stochastic 
behaviour, it is not reasonable to regard any one of them as 
the best GA. The evolution process of the GA’s parameters 
(i.e., averaged over the population in each generation) is 
presented in Figures 7-9 giving a clear indication of the 
advantage of small population size, large crossover rate 
and small mutation rate.  

The cost of this hybrid approach was also calculated by 
adding up the relative cost of Racing in evaluating each 
Meta-EA individual. The total cost of Racing was 72.30, 



giving an average cost of 72.30/ (20×30) =0.1205, which 
shows that Racing only required 12.05% of the effort 
required by the brute force method (i.e., this was at the 
similar level as those examples in Table 4).  

 

Figure 6. The Mean and Best Performance of GAs 

 

Figure 7. The Evolution Process of Population Size 

 

Figure 8. The Evolution Process of Crossover Rate 

 

Figure 9. The Evolution Process of Mutation Rate 

5 Conclusion 

The major motivation of this paper is to investigate the 
issue of parameter tuning in GAs as well as other EAs. The 
traditional Meta-EA approach and a relatively new 
statistical Racing approach were analysed and their 
advantages and disadvantages were also discussed. A 
novel method was proposed by combining these two 
approaches in order to exploit their unique strengths while 
avoiding some inherent weaknesses. The core idea is to use 
the Meta-EA approach to optimize those tunable algorithm 
parameters while Racing is used to identify the best 
algorithm from a set of candidates different from each 
other only in terms of those non-searchable parameters. By 
doing so, this new method could enjoy both the global 
optimization ability of the Meta-EA and Racing’s ability of 
handling non-searchable parameters. 

A simple ES in combination with Racing was used to 
tune a GA with six parameters on the One-Max problem. 
Note that the focus here is not to argue which EA should 
be used as the Meta-EA. Instead, we intend to highlight the 
advantage of the hybrid approach as well as the efficiency 
of Racing. The estimated running time of the parameter 
tuning task is more than 70 hours on a P III 800 MHz PC 
without Racing (i.e., Meta-EA + Brute Force) while it 
actually only took about 9 hours with the help of Racing 
(i.e., Meta-EA + Racing). 

 Certainly, we are also aware that the parameter tuning 
of EAs is still a very time-consuming process especially for 
complex test problems, which prevents it from being 
widely applied in practice. One possible direction is to 
look for more effective statistical methods that could 
achieve better efficiency and reliability. After all, Racing is 
a general framework, which allows different techniques to 
be plugged into it. On the other hand, if the search space is 
known to be unimodal or a good starting point could be 
provided, classical local optimization methods may 
achieve faster convergence speed compared to Meta-EAs. 
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