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Abstract. In this paper, we propose a new algorithm to perform single image 

separation based on online dictionary learning and orthogonal matching pursuit 

(OMP). This method consists of two separate processes: dictionary training for 

representing morphologically different components and the separation stage. The 

training process takes advantage of the prior knowledge of the components by 

adding component recovery error control penalties. The learned dictionaries have 

lower coherence with each other and better separation ability, which can benefit 

the separation process in two ways. Firstly, simple sparse coding methods such 

as OMP can be used to efficiently obtain superior performance. Secondly, well 

trained dictionaries can lead to satisfactory separation results even when the com-

ponents are similar. The dictionaries obtained can also serve as good initial inputs 

for other models using dictionary learning and sparse representation. Experi-

ments on complex images confirm that better results can be achieved efficiently 

by our method compared to other state-of-the-art algorithms. 

Keywords: Online Dictionary Learning, Image Separation, Morphological 

Component Analysis, OMP 

1 Introduction 

Data separation is a kind of fundamental transformation with wide applications in fields 

such as cosmology, geography and biomedical engineering. As a branch of data sepa-

ration, the purpose of image separation or decomposition is to identify different com-

ponents in a single image. A typical objective is to efficiently extract and separate tex-

ture and cartoon components mixed in the same image. Single image decomposition 

has been successfully applied in image processing for tasks such as rain moving from 

a picture [1] and reflection separation [2].  

There are a number of existing methods in the literature that can find a proper sepa-

ration in different ways. Some of them formulate the problem as matrix factorization 

and resort to techniques in the field of linear algebra for solutions [3]. Others use algo-

rithms based on numerical methods and variational models [4, 5]. There are also prior-

based models such as morphological components analysis (MCA) [6]. Most of these 

algorithms can get reasonable results, but there is still room for improvement with re-

spect to both the speed and performance of the decomposition. 
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Studies have shown that the sparse representation model can be applied to data sep-

aration [7]. The sparsity model has been widely used in the field of signal processing 

due to its elegant mathematical foundation and ability to depict the essence of natural 

signals [8]. The core idea of sparse representation is to transform the original signal 

into a linear combination of a small number of representation atoms. The set of such 

atoms is called a dictionary. A famous example is the morphological components anal-

ysis method [6] for decomposing signals into their building atoms. The success of de-

composing mixed signals into desired components relies heavily on the proper choice 

of dictionaries used in the separation step. Dictionaries must be highly effective in rep-

resenting their respective components, which means that the signal can be decomposed 

into a linear combination of a small number of atoms from the dictionary. Traditional 

dictionaries such as DCT transform, wavelet and shearlet [9] can be very efficient for 

the separation of certain components from a single signal mixture.  

However, the ability of these designed dictionaries to transform signals into sparse 

representation and extract them from mixed images is limited. In order to separate mor-

phologically distinct components, more flexible dictionaries are in need. To solve this 

problem, the idea of dictionary learning was introduced. Using dictionary learning to 

accomplish different signal processing tasks is very popular nowadays. Common dic-

tionary learning methods include MOD [10], K-SVD [11] and online dictionary learn-

ing [12]. There are mainly two approaches to incorporating dictionary learning into the 

process of separation. The first one is to learn dictionaries for each component dataset 

and then use MCA or sparse coding methods to reconstruct the parts of images contain-

ing multiple features [13]. The other one is to combine dictionary learning and the sep-

aration process together [14, 15]. These two approaches have their own advantages and 

disadvantages, which make them suitable for different scenarios. Our method follows 

the idea of the first strategy and improves upon the performance of the K-SVD based 

separation method [13] by training better dictionaries. 

Note that, in the second method, since the update of the dictionaries and the separa-

tion of data are achieved at the same time, the learned dictionaries are of little use for 

other separation tasks, even if the components are of similar patterns. In real-world 

applications, this feature can cause unnecessary computational redundancy. By con-

trast, employing two independent processes can improve the applicability of the dic-

tionaries and reduce the separation time. However, using fixed dictionaries in the sep-

aration phase means that dictionaries need to be effective in representing their own 

components and have minimum correlations with each other. To tackle this challenge, 

we proposed a supervised dictionary learning method, which aims at learning diction-

aries that are suitable for quick and successful separation using sparse coding. 

Another issue when applying the second method is the requirement for proper initial 

dictionaries. Well initialized dictionaries can lead to faster convergence and better final 

results while poor initialization may cause total failure of the algorithm. In the context 

of data separation, not only should the initial dictionary have strong representation abil-

ity for its aiming component, it is also of great importance that dictionaries for different 

components are as incoherent as possible with each other. To achieve this objective, 

some researchers proposed to add incoherence based penalties to the loss function [16] 

which may be useful in some cases but will compromise the representation ability of 



the dictionaries. The algorithm proposed in this paper is able to obtain dictionaries that 

meet all the above requirements to serve as quality initial dictionaries. 

2 Algorithm Outline 

In this paper, we proposed a novel dictionary learning method for single image separa-

tion based on sparse representation. One important assumption of our algorithm is that 

there is a training dataset for each component. Without loss of generality, we only dis-

cuss the situation where the image is composed of two components.  

The algorithm consists of two relatively separate processes. Firstly, we use super-

vised dictionary learning methods to train localized dictionaries for the components. 

Then the separation of images containing similar components is performed using the 

learned dictionaries via sparse coding algorithms. In this paper, we used OMP [17] to 

obtain sparse representations. The problem of decomposing an image into different 

components can be formulated as:  

f = 𝑢1 + 𝑢2                                                                                                                  (1) 

where f represents the mixture of component vectors 𝑢1, 𝑢2 ∈ ℝ
𝑚 .  In image pro-

cessing, signals are represented by vectors rearranged from small patches extracted 

from the original image by either distinct or sliding style. In sparse representation, we 

assume that each component can be represented sparsely using dictionaries. This leads 

to the following equation: 

f = 𝐷1𝛼1 + 𝐷2𝛼2 = [𝐷1 𝐷2] [
𝛼1
𝛼2
]                                                                                (2) 

where 𝐷1 ,𝐷2  ∈ ℝ
𝑚∗𝑛  are dictionaries and 𝛼1, 𝛼2 ∈ ℝ

𝑛  are sparse representations of 

components 𝑢1, 𝑢2.  

In the learning phase, we use the online dictionary learning method to find the dic-

tionaries in eq. (2). The main contribution of our algorithm is the introduction of the 

component recovery error control into the original objective function (i.e., use supervi-

sion to improve the separation ability of the dictionaries). Suppose β1 and β2 are the 

solutions of the following problems: 

{𝛽1, 𝛽2} ≜ argmin
𝛽1,𝛽2

∥ f − [𝐷1 𝐷2] [
𝛽1
𝛽2
] ∥2

2 , s. t. ∥ β1 ∥0+∥ β2 ∥0< 𝜇                            (3) 

where f = 𝑢1 + 𝑢2 + 𝑒, with e representing the noise. Ideally, the reconstructed com-

ponents should satisfy the following constraints: 

∥ 𝑢1 − 𝐷1𝛽1 ∥2
2< 𝜀1                                                                                                      (4) 

∥ 𝑢2 − 𝐷2𝛽2 ∥2
2< 𝜀2                                                                                                      (5) 

where 𝜀1, 𝜀2 are error controlling parameters. To achieve this goal, the objective func-

tion of the algorithm has to be modified as follows: 



{𝐷1̂, 𝐷2̂, 𝛼1̂, 𝛼 2̂} = argmin
𝐷1,𝐷2,𝛼1𝛼2

1

2
∑(∥ 𝑓𝑖 − 𝐷1𝛼i

1 − 𝐷2𝛼i
2 ∥2

2+ 𝜆1 ∥ 𝑢𝑖
1 − 𝐷1𝛼i

1 ∥2
2

𝑛

𝑖=1

+ 𝜆2 ∥ 𝑢i
2 − 𝐷2𝛼i

2 ∥2
2), s. t. ∥ 𝛼1 ∥0+∥ 𝛼

2 ∥0< 𝜇.                             (6) 

In eq. (6), λ1 and λ2 are the supervision factors, which control the recovery errors of 

different components. They can be set to different values or kept identical, depending 

on specific applications. With the ℓ0 norm constraint, this problem is non-convex. The 

classical solution is to alternately update between the dictionaries and sparse represen-

tations. Here, we solve the above problem by alternately updating the dictionaries and 

sparse coefficients based on the online dictionary learning method [12] and OMP [17]. 

The framework of the training process is shown by Algorithm 1. 

In the separation stage, the input is the mixed image and learned dictionaries for 

components of the image. Simple sparse coding algorithms such as OMP can be applied 

to find the sparse coefficients of the mixture using the combined dictionary. To recon-

struct the original components, one just needs to multiply the local dictionaries with 

their corresponding coefficients and then transform the vectors back to patches. The 

details of the proposed algorithm are demonstrated in the next section.  

 

Input: data set X1∈ ℛ𝑛∗𝑚, X2∈ ℛ𝑛∗𝑚, parameters 𝜆1, 𝜆2, 𝜇1, 𝜇2 

Initialization: randomly select data samples from X1, X2 to initialize 𝐷1, 𝐷2 

Α0
1←𝒪, Β0

1←𝒪, C0
1←𝒪,D0

1←𝒪, Α0
2←𝒪, Β0

2←𝒪, C0
2←𝒪,E0

2←𝒪 

For t=1 to T do: 

        Update the coefficients: 

           Draw x𝑡
1 from p(X1) and x𝑡

2 from p(X2) 

           Create the mixed signal: 𝑓𝑡 = x𝑡
1 +x𝑡

2 

           Sparse coding using OMP: 

   {𝛼𝑡
1, 𝛼𝑡

2} ≜ argmin
𝛼1,𝛼2

1

2
∥ 𝑓𝑡 − 𝐷

1𝛼1 − 𝐷2𝛼2 ∥2
2 , 𝑠. 𝑡. ∥ 𝛼1 ∥0+∥ 𝛼

2 ∥0< 𝜇 

       Α𝑡
1←Α𝑡−1

1 + 𝛼𝑡
1𝛼𝑡

1𝑇, Β𝑡
1←B𝑡−1

1 + 𝑥𝑡
1𝛼𝑡

1𝑇 , 

   C𝑡
1←C𝑡−1

1 + 𝛼𝑡
2𝛼𝑡

1𝑇,E𝑡
1←E𝑡−1

1 + 𝑓𝑡𝛼𝑡
1𝑇 , 

       Α𝑡
2←Α𝑡−1

2 + 𝛼𝑡
2𝛼𝑡

2𝑇, Β𝑡
2←B𝑡−1

2 + 𝑥𝑡
2𝛼𝑡

2𝑇 , 

   C𝑡
2←C𝑡−1

2 + 𝛼𝑡
1𝛼𝑡

2𝑇,E𝑡
2←E𝑡−1

2 + 𝑓𝑡𝛼𝑡
2𝑇 

Update 𝐷𝑡
1, 𝐷𝑡

2 by Algorithm 2, using 𝐷𝑡−1
1 , 𝐷𝑡−1

2  as warm start: 

 {𝐷𝑡
1, 𝐷𝑡

2} ≜ argmin
𝐷1,𝐷2

1

𝑡
 

1

2
∥ 𝑓𝑖 − 𝐷

1𝛼𝑖
1 − 𝐷2𝛼𝑖

2 ∥2
2𝑡

𝑖=1 + 

                  𝜆1 ∥ 𝑥𝑖
1 − 𝐷1𝛼𝑖

1 ∥2
2+ 𝜆2 ∥ 𝑥i

2 − 𝐷2𝛼i
2 ∥2

2 

End for 

Output: dictionaries 𝐷1, 𝐷2 . 

Algorithm 1: Supervised online dictionary learning for image decomposition 



3 Implementation Details 

3.1 Data Separation Using Sparse Coding Algorithm 

In data separation using sparse representation, it is critical that the signal can be repre-

sented sparsely. If no limit is put on the number of atoms used by the representation, 

the process may fail to find parts that belong to different sources. In consideration of 

this, we need to precisely control the sparsity, leading to the choice of OMP. Also，it 

has been proved [13] that OMP is better than MCA for separation. The idea of OMP is, 

in each iteration, to find the atom that is most correlated to the residual and project the 

residual to the space spanned by the chosen atoms while making the remaining part 

orthogonal to that space. Details of the algorithm can be found in [17]. In both the 

training and the separation stages, OMP is applied to find the best representation of the 

mixture against the combined dictionary: 

{𝛼𝑡
1, 𝛼𝑡

2} ≜ argmin
𝛼𝑡
1,𝛼𝑡

2

1

2
∥ 𝑓𝑡 − [𝐷

1 𝐷2] [
𝛼𝑡
1

𝛼𝑡
2] ∥2

2, 𝑠. 𝑡. ∥ 𝛼𝑡
1 ∥0+∥ 𝛼𝑡

2 ∥0< 𝜇                      (7) 

After the representation is retrieved, it is used to update the dictionary atoms in the 

training stage. In the separation phase, it is for reconstructing the morphologically dis-

tinct components 𝑢1̂, 𝑢2̂.  

For different situations, the parameter μ must be chosen accordingly to obtain good 

performance. Some separation related theories have been proposed to reveal the rela-

tion among the incoherence of dictionaries, the sparsity level and the separation error. 

Generally, the lower the coherence and the higher the sparsity, the better the separation 

results [18, 19]. Since coherence is more difficult to control, a relatively small μ as the 

sparsity controller is recommended to get good results.  

3.2 Dictionary Training 

Proper datasets are essential for training a pair of dictionaries for the two components. 

In image decomposition, it means that we need some images containing a single pattern 

from which patches can be drawn to form vectors as data samples. The training requires 

three datasets, two for the two components and one for mixed signals. The latter one is 

always generated during the training using the former two datasets.  

During each training session, the first step is to find the sparse representation of the 

mixture using OMP. Then, we use an online dictionary learning method similar to [12] 

to update the dictionaries. The objective function is as follows: 

{𝐷1̂, 𝐷2̂} ≜ argmin
𝐷1,𝐷2

1

𝑡
 (

1

2
∥ 𝑓𝑖 − 𝐷

1𝛼𝑖
1 − 𝐷2𝛼𝑖

2 ∥2
2𝑡

𝑖=1 + 𝜆1 ∥ 𝑥𝑖
1 − 𝐷1𝛼𝑖

1 ∥2
2+

                     𝜆2 ∥ 𝑥i
2 − 𝐷2𝛼i

2 ∥2
2)                                                                                   (8) 

Adopting the update process in [12], we use block-coordinate descent with warm 

starts to update each column of the dictionaries alternately. For example, when updat-

ing 𝐷1, with the other dictionary fixed, the objective function becomes: 



{𝐷1̂} ≜ argmin
𝐷1

1

𝑡
 (

1

2
∥ 𝑟2 − 𝐷1𝛼𝑖

1 ∥2
2+ 𝜆1 ∥ 𝑥𝑖

1 − 𝐷1𝛼𝑖
1 ∥2

2)𝑡
𝑖=1                                      (9) 

where r2 = 𝑓𝑖 − 𝐷
2𝛼𝑖

2 is the representation residual. Using simple algebraic calcula-

tion we have: 

{𝐷1̂} ≜ argmin
𝐷1

1

𝑡
((
1

2
+
𝜆1

2
) 𝑇𝑟(𝐷1

𝑇
𝐷1𝐴𝑡

1) − 𝑇𝑟(𝐷1
𝑇
𝐸𝑡
1) + 𝑇𝑟(𝐷1

𝑇
𝐷2𝐶𝑡

1) −

                             𝜆1𝑇𝑟(𝐷
1𝑇𝐵𝑡

1))                                                                                                   (10) 

where 𝐴𝑡
1 =  𝛼𝑖

1𝑡
𝑖=1 𝛼𝑖

1𝑇 , 𝐵𝑡
1 =  𝑥𝑖

1𝑡
𝑖=1 𝛼𝑖

1𝑇 , 𝐶𝑡
1 =  𝛼𝑖

2𝑡
𝑖=1 𝛼𝑖

1𝑇 , 𝐸𝑡
1 =  𝑓𝑖

𝑡
𝑖=1 𝛼𝑖

1𝑇 . By 

calculating the first-order derivatives of eq. (10), it is clear that the 𝑗𝑡ℎ atom 𝑑𝑗 of dic-

tionary 𝐷1 can be updated by: 

u𝑗 ←
1

𝜃
(𝜆1𝑏𝑗 + 𝑒𝑗 − (1 + 𝜆1)𝐷

1𝑎𝑗 − 𝐷
2𝑐𝑗) + 𝑑𝑗                                                      (11) 

where 𝑎𝑗 , 𝑏𝑗, 𝑐𝑗 , 𝑒𝑗 represent the 𝑗𝑡ℎ column of auxiliary matrices 𝐴𝑡
1, 𝐵𝑡

1 , 𝐶𝑡
1, 𝐸𝑡

1, respec-

tively. The same update procedure can be applied to 𝐷2. Thus, the dictionaries can be 

updated by the algorithm shown below: 

 

3.3 Parameter Selection 

The success of the algorithm relies on choosing proper parameter values. One of the 

classical challenges frequently encountered in dictionary learning is how to choose the 

size of the dictionary and the sparsity constraint parameter. Unfortunately, there is no 

existing theoretical guidance for parameter selection in data separation using dictionary 

methods. Although for different separation cases, the optimal parameter values may 

Input: 𝐴𝑡
1, 𝐵𝑡

1, 𝐶𝑡
1, 𝐸𝑡

1, 𝐴𝑡
2, 𝐵𝑡

2, 𝐶𝑡
2, 𝐸𝑡

2, 𝐷𝑡−1
1 , 𝐷𝑡−1

2 , 𝜆1, 𝜆2, 𝜇1, 𝜇2,θ. 
Repeat: 

For j=1 to k do: 

       Update the 𝑗𝑡ℎ atom of 𝐷1 using eq. (11): 

          u𝑗 ←
1

𝜃
(𝜆1𝑏𝑗

1 + 𝑒𝑗
1 − (1 + 𝜆1)𝐷𝑡−1

1 𝑎𝑗
1 − 𝐷𝑡−1

2 𝑐𝑗
1) + 𝑑𝑡−1,𝑗

1  

          𝑑𝑡,𝑗
1 ←

1

max(∥𝑢𝑗∥2,1)
𝑢𝑗 . 

End for 

For 

       Update the 𝑗𝑡ℎ atom of 𝐷2 using eq. (11): 

          u𝑗 ←
1

𝜃
(𝜆2𝑏𝑗

2 + 𝑒𝑗
2 − (1 + 𝜆2)𝐷𝑡−1

2 𝑎𝑗
2 − 𝐷𝑡−1

1 𝑐𝑗
2) + 𝑑𝑡−1,𝑗

2  

      𝑑𝑡,𝑗
2 ←

1

max(∥𝑢𝑗∥2,1)
𝑢𝑗 . 

End for 

Until convergence 

Return 𝐷𝑡
1, 𝐷𝑡

2. 

Algorithm 2: Dictionary Update 



vary a lot, some general rules can still be drawn from our systematic empirical studies 

for the selection of patch size, dictionary size, sparsity level, and the weight of the error 

control penalty.  

1. Patch size: normally, smaller patches lead to better results in image denoising, res-

toration and so on. However, in image decomposition, the size of the patches should 

be adjusted according to the image components. In our experiments, we compared 

the results using patch sizes of 10×10 and 20×20. 

2. Dictionary size: in sparse representation, over-complete dictionaries are used for bet-

ter sparse representation. If m is the size of the dictionary and n is the dimension of 

the signal, then m/n is called the redundancy factor, which describes the over-com-

pleteness of the dictionary. Usually, the greater the redundancy factor, the higher the 

sparsity level of the representation, which in image compression tasks can be very 

appealing. However, in data separation, higher redundancy may cause higher corre-

lation of the dictionaries. In our experiments, we used twice the dimension of the 

signals as the number of atoms for one dictionary. This setting of the redundancy 

factor has been shown to be suitable for most separation cases. 

3. Sparsity level: as mentioned earlier, in the proposed algorithm, the sparsity of the 

transformation to the space of the learned dictionary has to be set in advance. It can-

not be too high because the dictionary needs to be specialized for each component. 

In our experiments, the sparsity level was set to 10 and 20 for dictionaries with size 

of 100×200 and 400×800 respectively. 

4. Error control coefficients (𝜆1, 𝜆2): if these parameter values are too high, the learning 

of the dictionaries will be difficult to converge to a stable point. This is mainly be-

cause when the values of 𝜆 are too large, in the update stage, it will cause over-

learning. That is, the dictionary atoms may be changed dramatically so that next time 

when the same signal is chosen, the atoms selected by OMP will be significantly 

different and the separation error cannot be reduced as expected. Using the line 

search method, we found that good dictionaries were learned with 𝜆1, 𝜆2 equal to 0.7 

when the patch size was 10×10.  

4 Experiments 

We implemented the proposed algorithm using MATLAB 2014 with its core programs 

coded in C++ and tested it on Windows Server 2012 (64-bit version) with Intel Xeon 

CPU and 128GB RAM. We used adaptive MCA [14] and separation algorithms via 

dictionary learning algorithms including K-SVD [13] and online dictionary learning 

(ODL) [12] for comparison purpose. Three sets of experiments were conducted to show 

the effectiveness of our proposed algorithm from different perspectives.  

4.1 Experiment 1  

In this experiment, we show the general performance of our algorithm on separating 

two types of textures. We tested our algorithm on ten pairs of textures. Fully overlap-

ping patches (10×10) were extracted from 300×300 images for training dictionaries 



with 200 atoms. During the separation process, 10 different mixtures of the same size 

consisting of similar patterns were used as the inputs. Experiment results measured by 

PSNR and FSIM are shown in Table 1 and Table 2, respectively and some of the sample 

images are shown in Figure 1. FSIM was a recently proposed powerful perceptual qual-

ity metric [20] for visual quality assessment. Each of the value was averaged over ten 

individual trials. 

Table 1. Separation performance measured by PSNR 

Table 2. Separation performance measured by FSIM 

Table 3. Separation time using different methods with patch size 10×10 

Table 4. Separation time using different methods with patch size 20×20 

Table 1 and Table 2 show that the PSNR and FSIM values produced by our methods 

were higher than those by other algorithms in most of the cases and our algorithm 

achieved the highest average values. From Figure 1, we can see that the separated com-

ponents using our algorithm contained less residual from the opposite components and 

provided better visual effect. Also, the dictionaries learned by the proposed algorithm 

had lower coherence levels compared to those learned without supervision.  

PSNR(dB) Test-1 Test-2 Test-3 Test-4 Test-5 Test-6 Test-7 Test-8 Test-9 Test-10 Avg. 

K-SVD 17.61 16.83 16.20 13.47 18.23 17.49 16.36 16.09 13.72 13.78 15.98 

ODL 18.18 16.67 16.29 14.53 18.44 17.84 16.43 15.91 14.30 14.63 16.32 

Adaptive 

MCA 
16.50 14.75 14.73 13.54 15.55 16.51 15.14 14.18 13.71 14.09 14.87 

Ours 18.38 17.00 16.69 15.03 18.44 18.73 16.85 16.02 14.23 15.39 16.68 

FSIM Test-1 Test-2 Test-3 Test-4 Test-5 Test-6 Test-7 Test-8 Test-9 Test-10 Avg. 

K-SVD 0.7626 0.7767 0.7935 0.7654 0.7978 0.8179 0.7669 0.8183 0.7864 0.8209 0.7906 

ODL 0.7542 0.7843 0.8075 0.7810 0.7958 0.8081 0.7641 0.8182 0.7849 0.8269 0.7925 

Adaptive 
MCA 

0.7209 0.7498 0.7800 0.7743 0.7355 0.7398 0.7472 0.7744 0.7672 0.8256 0.7615 

Ours 0.7892 0.7891 0.8092 0.7949 0.7953 0.8398 0.7982 0.8125 0.7981 0.8179 0.8044 

Time(s) Test-1 Test-2 Test-3 Test-4 Test-5 Test-6 Test-7 Test-8 Test-9 Test-10 Avg. 

Adaptive 

MCA 
148.92 147.08 148.45 147.99 172.13 174.15 176.30 174.10 172.69 172.90 163.47 

Ours 38.35 38.18 37.66 41.44 40.70 41.71 40.55 39.89 38.60 40.98 39.81 

Time(s) Test-1 Test-2 Test-3 Test-4 Test-5 Test-6 Test-7 Test-8 Test-9 Test-10 Avg. 

Adaptive 

MCA 
363.80 356.99 357.50 357.76 471.41 478.63 486.36 484.44 484.89 484.72 432.65 

Ours 182.24 184.31 180.57 177.17 177.97 176.46 178.09 178.39 177.74 178.55 179.15 



Since the separation methods used in our algorithm, K-SVD and online dictionary 

learning based separation are identical, their separation times had no significant differ-

ence. In Table 3 and Table 4 we compared the time consumption by our algorithm and 

adaptive MCA with different patch sizes. It is clear that our algorithm took much less 

time compared to adaptive MCA. Although bigger patch means lower separation speed, 

the quality of the separated images is dramatically improved with the increase of patch 

size, which can be observed in Figure 2. 

 

Fig. 1. Separation results on tile and heart-shape textures using our algorithm and K-SVD sepa-

ration. From left to right: the mixture, the original components, the separated components using 

the proposed algorithm and K-SVD algorithm, respectively. 

 

Fig. 2. Separation results using different patch sizes by the proposed algorithm. From left to 

right: the original components and the separated components using 10×10, 20×20, 30×30 

patches, respectively. 



4.2 Experiment 2 

In this experiment, it is shown that using our learned dictionaries for algorithm initial-

ization can lead to better separation performance of adaptive MCA. Experimental re-

sults are shown in Figure 3. 

 

Fig. 3.  Separation results using different initial dictionaries. From left to right: the mixture, the 

original components, and adaptive MCA separation results using learned dictionaries by our al-

gorithm and by the K-SVD algorithm. 

In the above results, the separation PSNR values were 15.56 (our algorithm) and 

14.78 (K-SVD). It is clear that the initial dictionaries learned by our algorithm can lead 

to better individual components that are less contaminated by other components. 

4.3 Experiment 3 

Normally, higher overlapping rate can result in higher separation PSNR and better vis-

ual quality. However, high overlapping rate requires more computation, which can be 

very inconvenient in practice. For instance, the separation using full overlapping 

patches of a 256×256 picture with 8×8 patches will take about 60 times more time than 

using distinct patches. In our experiments, we show that our algorithm can still produce 

competitive results even when using distinct patches.  



 

Fig. 4. Comparison of different extraction methods. From left to right: the original components, 

separation using K-SVD, our algorithm with distinct patches and separation using our algorithm 

with overlapping patches. 

Table 5. Separation time using different patch extraction strategies 

Although in Figure 4 the quality with distinct patches was noticeably inferior to the 

quality with fully overlapping patches, the computational time shown in Table 5 was 

tremendously reduced, which can be very appealing in real world applications. 

5 Conclusions 

We proposed a new method to learn quality dictionaries for single image separation 

where training datasets are used to perform supervised online dictionary learning. Bet-

ter trained dictionaries allow the use of simple sparse coding algorithms in the separa-

tion phase, which can greatly accelerate the separation process without compromising 

its performance. In addition, dictionaries learned by our method can also serve as the 

initial inputs for other methods using sparse representation to achieve better results. 

Furthermore, our algorithm can produce reasonable results using distinct patches, re-

ducing the separation time greatly. In the future, we will conduct in-depth theoretical 

analysis of our algorithm and further accelerate the training process.  
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