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Abstract. RegionBoost is one of the classical examples of Boosting with 
dynamic weighting schemes. Apart from its demonstrated superior performance 
on a variety of classification problems, relatively little effort has been devoted 
to the detailed analysis of its convergence behavior. This paper presents some 
results from a preliminary attempt towards understanding the practical 
convergence behavior of RegionBoost. It is shown that, in some situations, the 
training error of RegionBoost may not be able to converge consistently as its 
counterpart AdaBoost and a deep understanding of this phenomenon may 
greatly contribute to the improvement of RegionBoost. 
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1 Introduction 

Since ensemble learning can help improve the accuracy of a single learning model, it 
has been an active topic in supervised learning for more than two decades. An 
ensemble of classifiers refers to a set of classifiers whose individual decisions are 
combined in some way to determine the class labels of unknown samples [1]. As a 
result, how to combine the individual classifiers is a key question in ensemble 
learning. In the past, many strategies have been developed, such as unweighted voting 
in Bagging [2] and Random Forests [3], weighted voting in Boosting [3], learning a 
combiner function [4] and stacking [5]. 

In addition to the static weighting methods, various dynamic weighting schemes 
have also been proposed in recent years, which take the features of input samples into 
consideration. Typical examples include dynamic voting(DV), dynamic selection(DS), 
and dynamic voting selection(DVS) [6]. Some of these schemes are independent of 
the underlying ensemble algorithms. For example, DV, DS, DVS have been applied 
to Bagging, Boosting and Random Forests respectively [6, 7]. Other strategies focus 
on specific ensemble methods, among which Boosting is the most popular one. 

Boosting [8] encompasses a family of successful ensemble mechanisms by 
sequentially producing a series of classifiers and combining them using weighted 
voting. The training set used for each classifier is chosen based on the performance of 
the earlier classifier(s) in the series [9]. AdaBoost [10] is a one of the most commonly 
used Boosting algorithms. In the training process, AdaBoost decreases the weights of 
training samples classified correctly by the current classifier and increases the weights 
of those classified incorrectly to create a new training set for the next iteration. 



When combining the decisions, AdaBoost assigns a single value weight αt to each 
basic classifier ht(x) based on its error on the corresponding weighted training set, 
which means that the weights of classifiers are constant and will not change for 
different new input samples. Obviously, this approach ignores the inherent 
performance variability of classifiers on new samples with different feature values. In 
fact, the same basic classifier may not be as effective at classifying samples in some 
areas of the feature space as in other areas. 

This issue has been addressed by several improved Boosting algorithms 
independently, which replace the fixed weighting methods with dynamic weighting 
schemes, including RegionBoost [9], DynaBoost [11], iBoost [12], WeightBoost [13] 
and local Boost [14]. A crucial factor of these schemes is how to dynamically adjust 
the weights with regard to the input samples. 

Apart from some limited progresses, theoretical analysis on ensemble mechanisms 
has shown to be a very challenging task. For the dynamic weighting schemes, both 
theoretical analysis and comprehensive empirical studies have been rare in the 
literature. The purpose of this paper is to conduct a preliminary investigation of the 
practical behavior of Boosting with dynamic weighting schemes with focus on 
RegionBoost in order to gain deeper insights into these algorithms.  

2 Dynamic Weighting Schemes 

One of the major advantages of ensemble learning over a single model is that an 
ensemble approach allows each basic model to cover a different aspect of the dataset. 
When combined together, they are able to explain the whole dataset more thoroughly. 
Therefore, in order to take the full strength of ensemble learning, a good combination 
strategy should be able to examine the input pattern and only invoke the basic models 
that are appropriate for the input pattern [13]. 

2.1 Framework  

A number of Boosting methods with dynamic weighting schemes have been proposed 
independently with proven superior performance over standard Boosting algorithms. 
However, the essential ideas are very similar: the basic classifiers should be weighted 
based on not only the training error but also the sample to be classified.  

Although the implementation details are more or less different, the framework of 
Boosting with dynamic weighting schemes can be illustrated as Fig. 1. An extra 
learner αt(x) is introduced for every classifier ht(x) as a competency predictor to 
evaluate the dynamic input-dependent weights for each classifier. Generally speaking, 
the extra learner is trained to simulate the performance of each basic classifier on the 
sample space. In other words, this extra learner is used to indicate whether a certain 
basic classifier is likely to yield accurate results given an unknown sample.  

Many of the commonly used classification methods have been employed as the 
competency predictors such as k-Nearest Neighbor (RegionBoost), Neural Networks 
(RegionBoost) and Decision Trees (iBoost). It is clear that one of the key issues in 
Boosting with dynamic weighting schemes is how to construct the competency 



predictors in order to appropriately determine the weights, which can significantly 
affect the performance of the combined classifiers. 

 
 

 
Fig. 1. The framework of Boosting with dynamic weighting schemes. 

2.2 RegionBoost 

In this paper, we used RegionBoost as the representative example of Boosting with 
dynamic weighting schemes in the empirical analysis. The main idea behind 
RegionBoost is to build an extra model upon each basic classifier based on its training 
results (whether a training sample is classified correctly or not). By doing so, this new 
model is able to estimate the accuracy or the competency of the classifier for each 
new sample.  

One of the intuitive approaches to estimating model competency is to use the kNN 
(k-Nearest Neighbor) method to find the k points in the training set nearest to the new 
sample to be classified and use the performance of each classifier on these k points as 
the measurement [9]. More specifically, the weight of each classifier for this new 
sample to be classified is determined by the percentage of points (out of k points) 
correctly classified by this classifier [9]. 

RegionBoost has been reported having better performance compared to AdaBoost 
in terms of accuracy on a number of UCI benchmark datasets (though it makes little 
difference on certain datasets) [9]. It should be mentioned that, in AdaBoost, the value 
of αt is selected so that the overall error on the training set is minimized. In the 
meantime, the overall training error enjoys a proven upper bound that consistently 
decreases during iterations [10]. By contrast, in RegionBoost, αt(x) depends on the 
local error of the basic classifier ht(x) on the specific x. As a result, the convergence 
behavior of RegionBoost can no longer be explained according to the existing 
theoretical work on AdaBoost. 

3 Convergence of RegionBoost 

This section presents some interesting phenomena of the convergence of RegionBoost 
on a synthesized dataset as well as a few UCI benchmark datasets. A detailed analysis 
is also given to provide some deeper insights into the mechanism of RegionBoost. 
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3.1 The Triangle Dataset 

First of all, a simple 2D dataset called Triangle as shown in Fig. 2(a) was used to 
illustrate the convergence behavior of RegionBoost. The dataset with 1000 samples 
(“○” vs. “x”) was randomly divided into training set and testing set of equal sizes. The 
decision stumps model was used as the basic classifier, which is a weak classification 
method and can only split along a single attribute (a simplified decision tree model). 
An ensemble of 200 classifiers was created (the process of creating basic models in 
RegionBoost is the same as that in AdaBoost) and kNN (k=5) was used to determine 
the dynamic weights for each basic classifier. 

When comparing the training error curves of RegionBoost and AdaBoost shown in 
Fig. 2(b), we found two distinctly different patterns. The training errors of Adaboost 
decreased consistently and reached zero in about 120 iterations. In contrast, the 
training errors of RegionBoost decreased faster at the beginning, but quickly flattened 
out after about 10 iterations. 
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Fig. 2. (a) The Triangle Dataset. (b) The training errors of AdaBoost and RegionBoost. 

Since RegionBoost employs an extra parameter k compared to AdaBoost, 
additional experiments were conducted to examine the influence of different k values. 
Table 1 shows the results of RegionBoost with stumps and kNN with k = 3, 5, 7, 9 
respectively. It is interesting to see that the training errors of RegionBoost with 
stumps were very close to those of kNN with the same k values. 

Table 1. The training errors of RegionBoost and kNN (The Triangle Dataset). 

K RegionBoost kNN 
3 0.0340 0.0340 
5 0.0220 0.0220 
7 0.0200 0.0220 
9 0.0240 0.0260 

 



3.2 Analysis of the Triangle Dataset 

Since it was observed that the training error of RegionBoost did not converge to zero 
and instead it was quite close to the error of kNN, it is reasonable to hypothesize that 
the convergence of RegionBoost has a strong relation with the accuracy of kNN, 
which is used to determine the weights of basic classifiers. In this section, we will 
give some explanations of this relationship from three aspects. 

Firstly, let’s take a look into the classification process of a single sample. Given a 
query point (denoted by a star), depending on the locations of its neighbors and the 
decision boundary, there are two possible situations. In the first one, the boundary 
divides the neighborhood of the sample into two parts, as shown in Fig. 3(a), which is 
called “Split” pattern for that sample. In the second one, the boundary does not go 
through the neighborhood, which is called “Non-Split” pattern, as shown in Fig. 3(b). 

In Fig. 3, suppose that the star belongs to “x”. In the “Non-Split” pattern, if the left 
side of the boundary is classified as “○”, the query point will be classified as “○” with 
weight 0.6 (3 out of 5). On the flip side, the query point will be classified as “x” with 
weight 0.4 (2 out of 5). By combining the above two classifiers, the query point will 
be misclassified as “○”, which is the same as kNN. As a result, if within a large 
number of iterations, the numbers of the two types of classifiers are close, the results 
of RegionBoost should be identical to kNN. 

However, there is another situation that can make RegionBoost different from 
kNN. In Fig. 3(a), the classifier will either make the 5 neighbors all right or all wrong. 
When all neighbors are classified correctly, the query point will be correctly classified 
as “x” and the weight of the classifier is 1. On the flip side, the query point will be 
incorrectly classified as “○” but the weight is 0, making no negative effect on the 
overall decision at all. Consequently, in this situation, RegionBoost can always 
classify the query point correctly while kNN will make a wrong decision. This is an 
important reason that RegionBoost may reach lower training errors than kNN. 
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(a) Split Pattern (b) Non-Split Pattern 

Fig. 3. Relationships of the neighborhood of a query point and the decision boundary. 

Note that in the “Non-Split” case, if all neighbors are of the same class label as the 
true class label of the query point, the weight of the basic classifier will be 1 if it 
makes the right decision (0 if it is wrong). As a result, RegionBoost can make the 



right decision on these query points immediately after a correct classifier is created. 
By contrast, in AdaBoost, multiple correct classifiers may be required to overturn the 
wrong classification results made by a previous classifier. This fact explains the faster 
convergence speed of RegionBoost at the beginning of training. 

Secondly, we analyzed the influence of proportions of the two patterns on the 
convergence of RegionBoost. Let NS(i) and S(i) be the number of “Non-Split” pattern 
classifiers and the number of “Split” pattern classifiers for the ith sample respectively. 
Fig. 4(a) shows the histogram of p(i)=NS(i)/T (T=200). It is clear that for most 
samples, “Non-Split” pattern classifiers accounted for more than 90% of the 
classifiers. 

Let NS+(i) be the number of “Non-Split” classifiers that produce the same result as 
kNN on the ith sample and NS-(i) be the number of the rest “Non-Split” classifiers.  

)(/))()(()( iNSiNSiNSiD −+ −=  (1) 

The minimum D (i) that can guarantee the consistence between RegionBoost and 
kNN can be calculated as follows. For k=5, the minimum weight of a classifier is 0.6 
if it produces the same result as kNN (e.g., the query point is classified as “○”and 
there are three neighbors belonging to “○”) while the maximum weight of a classifier 
is 0.4 if it produces the opposite result as kNN. As a result, it is easy to see that, as 
long as D (i) is greater than -0.2 (i.e., 40% or more for NS+ vs. 60% or less for NS-), 
the set of “Non-Split” classifiers will be functionally identical to kNN.  

Fig. 4(b) shows the distribution of D (i) indicating that all D (i) values were greater 
than -0.2. So the classification results from the ensemble of “Non-Split” classifiers 
were exactly the same as those of kNN. 

Finally, the classification results from the ensemble of “Non-Split” classifiers, the 
ensemble of “Split” pattern and the overall results were compared. It turns out that the 
overall results of 498 out of 500 samples were the same as the results from the 
ensemble of “Non-Split” classifiers, which have been shown to be identical to kNN. 
In other words, the performance of RegionBoost was dominated by “Non-Split” 
classifiers and its training error should be close to the error of kNN (instead of 
converging towards 0). 
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Fig. 4. The Triangle Dataset (a) The distribution of p(i). (b) The distribution of D(i). 
 



3.3 Validation on UCI data 

This section presents validation experiments on three commonly used UCI datasets: 
Pima, Credit Aus and Sonar [15]. The experimental settings were the same as in the 
Triangle dataset (50% samples were used as the training set). The training errors of 
AdaBoost, RegionBoost and kNN (k=5) are shown in Table 2. More specifically, on 
Pima and Credit Aus, the performance of RegionBoost was very close to kNN. In fact, 
the overall results of 383 out of 384 samples in Pima and 342 out of 345 samples in 
Credit Aus were the same as the results from the ensembles of “Non-Split” classifiers.  

However the Sonar dataset showed something different. The training error of 
RegionBoost reached zero but the error of kNN was 0.1154. A closer look at the 
experimental results on Sonar showed that the final classification results of samples in 
Sonar were largely determined by the “Split” classifiers, which correctly classified 
103 out of 104 samples. Note that the number of samples in Sonar is quite small (208) 
compared to its dimensionality (60). As a result, the neighbors of a query point are 
expected to be much sparser that in other cases and thus are more likely to be 
separated by the decision boundaries.  

Table 2.  The training errors on three UCI datasets. 

Dataset AdaBoost RegionBoost kNN 
Pima 0.1328 0.1771 0.1797 

Credit Aus 0.0667 0.0812 0.0899 
  Sonar 0 0 0.1154 

4 The Effect of Basic Learners 

The reason that the training errors of RegionBoost did not converge to zero in the 
experiments above may be partially due to the power of the basic learner in use. Since 
the decision stumps model can only create very simple decision boundaries, the 
neighbors of most query points may belong to the “Non-Split” category. In this 
section, we chose the decision trees model as the basic classifiers. The experimental 
results of AdaBoost, RegionBoost and kNN are shown in Table 3, showing that the 
training errors of RegionBoost with trees were much lower than with stumps. In the 
meantime, the results of RegionBoost with trees became apparently different from 
kNN, which may be due to the increasing percentage of the “Split” classifiers. 

Table 3.  A comparison of the training errors (Trees vs. Stumps). 

Dataset AdaBoost 
(Trees) 

RegionBoost
(Trees) 

AdaBoost
(Stumps) 

RegionBoost 
(Stumps) 

kNN 

Triangle 0 0.0120 0 0.0220 0.0220 
Pima 0 0.0547 0.1328 0.1771 0.1797 

Credit Aus 0 0.0087 0.0667 0.0812 0.0899 
  Sonar 0 0 0 0 0.1154 



5   Conclusions 

In this paper, we empirically investigated the convergence of a typical Boosting 
algorithm with dynamic weighting schemes called RegionBoost, which employs kNN 
as the competency predictor of its basic classifiers. The major motivation was to 
provide one of the first attempts to better understand the behavior of RegionBoost. 

Experimental results showed that the training errors of RegionBoost decreased 
faster than those of AdaBoost at the beginning of iterations but could not converge to 
0 in some cases. Through detailed analysis, we showed that the reason lies in the fact 
that the training errors of RegionBoost are largely influenced by the accuracy of kNN, 
especially when the basic learners are very weak. We also demonstrated that the 
performance of RegionBoost can be enhanced with basic learners capable of creating 
more sophisticated decision boundaries. 

In addition to the preliminary results presented here, there is still a huge open area 
for future work. For example, competency predictors other than kNN may also be 
used with RegionBoost and its convergence behavior in the new situation needs to be 
formally investigated and we hope that the techniques used in this paper may still be 
helpful to some extend. In the meantime, it is also important to think about the 
strategy for purposefully creating a set of basic classifiers that are better suited to the 
weighting schemes of RegionBoost. 
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