
An Empirical Study of the Convergence of RegionBoost

Xinzhu Yang, Bo Yuan, Wenhuang Liu

Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P. R. China

yangxz03@mails.tsinghua.edu.cn, {yuanb, liuwh}@sz.tsinghua.edu.cn

Abstract. RegionBoost is one of the classical examples of Boosting with
dynamic weighting schemes. Apart from its demonstrated superior performance
on a variety of classification problems, relatively little effort has been devoted
to the detailed analysis of its convergence behavior. This paper presents some
results from a preliminary attempt towards understanding the practical
convergence behavior of RegionBoost. It is shown that, in some situations, the
training error of RegionBoost may not be able to converge consistently as its
counterpart AdaBoost and a deep understanding of this phenomenon may
greatly contribute to the improvement of RegionBoost.

Keywords: Boosting, RegionBoost, Convergence, kNN, Decision Stumps.

1 Introduction

Since ensemble learning can help improve the accuracy of a single learning model, it
has been an active topic in supervised learning for more than two decades. An
ensemble of classifiers refers to a set of classifiers whose individual decisions are
combined in some way to determine the class labels of unknown samples [1]. As a
result, how to combine the individual classifiers is a key question in ensemble
learning. In the past, many strategies have been developed, such as unweighted voting
in Bagging [2] and Random Forests [3], weighted voting in Boosting [3], learning a
combiner function [4] and stacking [5].

In addition to the static weighting methods, various dynamic weighting schemes
have also been proposed in recent years, which take the features of input samples into
consideration. Typical examples include dynamic voting(DV), dynamic selection(DS),
and dynamic voting selection(DVS) [6]. Some of these schemes are independent of
the underlying ensemble algorithms. For example, DV, DS, DVS have been applied
to Bagging, Boosting and Random Forests respectively [6, 7]. Other strategies focus
on specific ensemble methods, among which Boosting is the most popular one.

Boosting [8] encompasses a family of successful ensemble mechanisms by
sequentially producing a series of classifiers and combining them using weighted
voting. The training set used for each classifier is chosen based on the performance of
the earlier classifier(s) in the series [9]. AdaBoost [10] is a one of the most commonly
used Boosting algorithms. In the training process, AdaBoost decreases the weights of
training samples classified correctly by the current classifier and increases the weights
of those classified incorrectly to create a new training set for the next iteration.

When combining the decisions, AdaBoost assigns a single value weight αt to each
basic classifier ht(x) based on its error on the corresponding weighted training set,
which means that the weights of classifiers are constant and will not change for
different new input samples. Obviously, this approach ignores the inherent
performance variability of classifiers on new samples with different feature values. In
fact, the same basic classifier may not be as effective at classifying samples in some
areas of the feature space as in other areas.

This issue has been addressed by several improved Boosting algorithms
independently, which replace the fixed weighting methods with dynamic weighting
schemes, including RegionBoost [9], DynaBoost [11], iBoost [12], WeightBoost [13]
and local Boost [14]. A crucial factor of these schemes is how to dynamically adjust
the weights with regard to the input samples.

Apart from some limited progresses, theoretical analysis on ensemble mechanisms
has shown to be a very challenging task. For the dynamic weighting schemes, both
theoretical analysis and comprehensive empirical studies have been rare in the
literature. The purpose of this paper is to conduct a preliminary investigation of the
practical behavior of Boosting with dynamic weighting schemes with focus on
RegionBoost in order to gain deeper insights into these algorithms.

2 Dynamic Weighting Schemes

One of the major advantages of ensemble learning over a single model is that an
ensemble approach allows each basic model to cover a different aspect of the dataset.
When combined together, they are able to explain the whole dataset more thoroughly.
Therefore, in order to take the full strength of ensemble learning, a good combination
strategy should be able to examine the input pattern and only invoke the basic models
that are appropriate for the input pattern [13].

2.1 Framework

A number of Boosting methods with dynamic weighting schemes have been proposed
independently with proven superior performance over standard Boosting algorithms.
However, the essential ideas are very similar: the basic classifiers should be weighted
based on not only the training error but also the sample to be classified.

Although the implementation details are more or less different, the framework of
Boosting with dynamic weighting schemes can be illustrated as Fig. 1. An extra
learner αt(x) is introduced for every classifier ht(x) as a competency predictor to
evaluate the dynamic input-dependent weights for each classifier. Generally speaking,
the extra learner is trained to simulate the performance of each basic classifier on the
sample space. In other words, this extra learner is used to indicate whether a certain
basic classifier is likely to yield accurate results given an unknown sample.

Many of the commonly used classification methods have been employed as the
competency predictors such as k-Nearest Neighbor (RegionBoost), Neural Networks
(RegionBoost) and Decision Trees (iBoost). It is clear that one of the key issues in
Boosting with dynamic weighting schemes is how to construct the competency

predictors in order to appropriately determine the weights, which can significantly
affect the performance of the combined classifiers.

Fig. 1. The framework of Boosting with dynamic weighting schemes.

2.2 RegionBoost

In this paper, we used RegionBoost as the representative example of Boosting with
dynamic weighting schemes in the empirical analysis. The main idea behind
RegionBoost is to build an extra model upon each basic classifier based on its training
results (whether a training sample is classified correctly or not). By doing so, this new
model is able to estimate the accuracy or the competency of the classifier for each
new sample.

One of the intuitive approaches to estimating model competency is to use the kNN
(k-Nearest Neighbor) method to find the k points in the training set nearest to the new
sample to be classified and use the performance of each classifier on these k points as
the measurement [9]. More specifically, the weight of each classifier for this new
sample to be classified is determined by the percentage of points (out of k points)
correctly classified by this classifier [9].

RegionBoost has been reported having better performance compared to AdaBoost
in terms of accuracy on a number of UCI benchmark datasets (though it makes little
difference on certain datasets) [9]. It should be mentioned that, in AdaBoost, the value
of αt is selected so that the overall error on the training set is minimized. In the
meantime, the overall training error enjoys a proven upper bound that consistently
decreases during iterations [10]. By contrast, in RegionBoost, αt(x) depends on the
local error of the basic classifier ht(x) on the specific x. As a result, the convergence
behavior of RegionBoost can no longer be explained according to the existing
theoretical work on AdaBoost.

3 Convergence of RegionBoost

This section presents some interesting phenomena of the convergence of RegionBoost
on a synthesized dataset as well as a few UCI benchmark datasets. A detailed analysis
is also given to provide some deeper insights into the mechanism of RegionBoost.

h1(x) h2(x) …

α1(x) α2(x) αT(x)

H(x)=∑t[αt(x)ht(x)]

Training

Testing Results

hT(x)

…

3.1 The Triangle Dataset

First of all, a simple 2D dataset called Triangle as shown in Fig. 2(a) was used to
illustrate the convergence behavior of RegionBoost. The dataset with 1000 samples
(“○” vs. “x”) was randomly divided into training set and testing set of equal sizes. The
decision stumps model was used as the basic classifier, which is a weak classification
method and can only split along a single attribute (a simplified decision tree model).
An ensemble of 200 classifiers was created (the process of creating basic models in
RegionBoost is the same as that in AdaBoost) and kNN (k=5) was used to determine
the dynamic weights for each basic classifier.

When comparing the training error curves of RegionBoost and AdaBoost shown in
Fig. 2(b), we found two distinctly different patterns. The training errors of Adaboost
decreased consistently and reached zero in about 120 iterations. In contrast, the
training errors of RegionBoost decreased faster at the beginning, but quickly flattened
out after about 10 iterations.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

x1

x2

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

Iteration

E
rro

r R
at

es

AdaBoost
RegionBoost

(a) (b)

Fig. 2. (a) The Triangle Dataset. (b) The training errors of AdaBoost and RegionBoost.

Since RegionBoost employs an extra parameter k compared to AdaBoost,
additional experiments were conducted to examine the influence of different k values.
Table 1 shows the results of RegionBoost with stumps and kNN with k = 3, 5, 7, 9
respectively. It is interesting to see that the training errors of RegionBoost with
stumps were very close to those of kNN with the same k values.

Table 1. The training errors of RegionBoost and kNN (The Triangle Dataset).

K RegionBoost kNN
3 0.0340 0.0340
5 0.0220 0.0220
7 0.0200 0.0220
9 0.0240 0.0260

3.2 Analysis of the Triangle Dataset

Since it was observed that the training error of RegionBoost did not converge to zero
and instead it was quite close to the error of kNN, it is reasonable to hypothesize that
the convergence of RegionBoost has a strong relation with the accuracy of kNN,
which is used to determine the weights of basic classifiers. In this section, we will
give some explanations of this relationship from three aspects.

Firstly, let’s take a look into the classification process of a single sample. Given a
query point (denoted by a star), depending on the locations of its neighbors and the
decision boundary, there are two possible situations. In the first one, the boundary
divides the neighborhood of the sample into two parts, as shown in Fig. 3(a), which is
called “Split” pattern for that sample. In the second one, the boundary does not go
through the neighborhood, which is called “Non-Split” pattern, as shown in Fig. 3(b).

In Fig. 3, suppose that the star belongs to “x”. In the “Non-Split” pattern, if the left
side of the boundary is classified as “○”, the query point will be classified as “○” with
weight 0.6 (3 out of 5). On the flip side, the query point will be classified as “x” with
weight 0.4 (2 out of 5). By combining the above two classifiers, the query point will
be misclassified as “○”, which is the same as kNN. As a result, if within a large
number of iterations, the numbers of the two types of classifiers are close, the results
of RegionBoost should be identical to kNN.

However, there is another situation that can make RegionBoost different from
kNN. In Fig. 3(a), the classifier will either make the 5 neighbors all right or all wrong.
When all neighbors are classified correctly, the query point will be correctly classified
as “x” and the weight of the classifier is 1. On the flip side, the query point will be
incorrectly classified as “○” but the weight is 0, making no negative effect on the
overall decision at all. Consequently, in this situation, RegionBoost can always
classify the query point correctly while kNN will make a wrong decision. This is an
important reason that RegionBoost may reach lower training errors than kNN.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x2

(a) Split Pattern (b) Non-Split Pattern

Fig. 3. Relationships of the neighborhood of a query point and the decision boundary.

Note that in the “Non-Split” case, if all neighbors are of the same class label as the
true class label of the query point, the weight of the basic classifier will be 1 if it
makes the right decision (0 if it is wrong). As a result, RegionBoost can make the

right decision on these query points immediately after a correct classifier is created.
By contrast, in AdaBoost, multiple correct classifiers may be required to overturn the
wrong classification results made by a previous classifier. This fact explains the faster
convergence speed of RegionBoost at the beginning of training.

Secondly, we analyzed the influence of proportions of the two patterns on the
convergence of RegionBoost. Let NS(i) and S(i) be the number of “Non-Split” pattern
classifiers and the number of “Split” pattern classifiers for the ith sample respectively.
Fig. 4(a) shows the histogram of p(i)=NS(i)/T (T=200). It is clear that for most
samples, “Non-Split” pattern classifiers accounted for more than 90% of the
classifiers.

Let NS+(i) be the number of “Non-Split” classifiers that produce the same result as
kNN on the ith sample and NS-(i) be the number of the rest “Non-Split” classifiers.

)(/))()(()(iNSiNSiNSiD −+ −= (1)

The minimum D (i) that can guarantee the consistence between RegionBoost and
kNN can be calculated as follows. For k=5, the minimum weight of a classifier is 0.6
if it produces the same result as kNN (e.g., the query point is classified as “○”and
there are three neighbors belonging to “○”) while the maximum weight of a classifier
is 0.4 if it produces the opposite result as kNN. As a result, it is easy to see that, as
long as D (i) is greater than -0.2 (i.e., 40% or more for NS+ vs. 60% or less for NS-),
the set of “Non-Split” classifiers will be functionally identical to kNN.

Fig. 4(b) shows the distribution of D (i) indicating that all D (i) values were greater
than -0.2. So the classification results from the ensemble of “Non-Split” classifiers
were exactly the same as those of kNN.

Finally, the classification results from the ensemble of “Non-Split” classifiers, the
ensemble of “Split” pattern and the overall results were compared. It turns out that the
overall results of 498 out of 500 samples were the same as the results from the
ensemble of “Non-Split” classifiers, which have been shown to be identical to kNN.
In other words, the performance of RegionBoost was dominated by “Non-Split”
classifiers and its training error should be close to the error of kNN (instead of
converging towards 0).

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

40

50

60

p

S
am

pl
e

N
um

be
r

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

diff

S
am

pl
e

N
um

be
r

(a) (b)

Fig. 4. The Triangle Dataset (a) The distribution of p(i). (b) The distribution of D(i).

3.3 Validation on UCI data

This section presents validation experiments on three commonly used UCI datasets:
Pima, Credit Aus and Sonar [15]. The experimental settings were the same as in the
Triangle dataset (50% samples were used as the training set). The training errors of
AdaBoost, RegionBoost and kNN (k=5) are shown in Table 2. More specifically, on
Pima and Credit Aus, the performance of RegionBoost was very close to kNN. In fact,
the overall results of 383 out of 384 samples in Pima and 342 out of 345 samples in
Credit Aus were the same as the results from the ensembles of “Non-Split” classifiers.

However the Sonar dataset showed something different. The training error of
RegionBoost reached zero but the error of kNN was 0.1154. A closer look at the
experimental results on Sonar showed that the final classification results of samples in
Sonar were largely determined by the “Split” classifiers, which correctly classified
103 out of 104 samples. Note that the number of samples in Sonar is quite small (208)
compared to its dimensionality (60). As a result, the neighbors of a query point are
expected to be much sparser that in other cases and thus are more likely to be
separated by the decision boundaries.

Table 2. The training errors on three UCI datasets.

Dataset AdaBoost RegionBoost kNN
Pima 0.1328 0.1771 0.1797

Credit Aus 0.0667 0.0812 0.0899
 Sonar 0 0 0.1154

4 The Effect of Basic Learners

The reason that the training errors of RegionBoost did not converge to zero in the
experiments above may be partially due to the power of the basic learner in use. Since
the decision stumps model can only create very simple decision boundaries, the
neighbors of most query points may belong to the “Non-Split” category. In this
section, we chose the decision trees model as the basic classifiers. The experimental
results of AdaBoost, RegionBoost and kNN are shown in Table 3, showing that the
training errors of RegionBoost with trees were much lower than with stumps. In the
meantime, the results of RegionBoost with trees became apparently different from
kNN, which may be due to the increasing percentage of the “Split” classifiers.

Table 3. A comparison of the training errors (Trees vs. Stumps).

Dataset AdaBoost
(Trees)

RegionBoost
(Trees)

AdaBoost
(Stumps)

RegionBoost
(Stumps)

kNN

Triangle 0 0.0120 0 0.0220 0.0220
Pima 0 0.0547 0.1328 0.1771 0.1797

Credit Aus 0 0.0087 0.0667 0.0812 0.0899
 Sonar 0 0 0 0 0.1154

5 Conclusions

In this paper, we empirically investigated the convergence of a typical Boosting
algorithm with dynamic weighting schemes called RegionBoost, which employs kNN
as the competency predictor of its basic classifiers. The major motivation was to
provide one of the first attempts to better understand the behavior of RegionBoost.

Experimental results showed that the training errors of RegionBoost decreased
faster than those of AdaBoost at the beginning of iterations but could not converge to
0 in some cases. Through detailed analysis, we showed that the reason lies in the fact
that the training errors of RegionBoost are largely influenced by the accuracy of kNN,
especially when the basic learners are very weak. We also demonstrated that the
performance of RegionBoost can be enhanced with basic learners capable of creating
more sophisticated decision boundaries.

In addition to the preliminary results presented here, there is still a huge open area
for future work. For example, competency predictors other than kNN may also be
used with RegionBoost and its convergence behavior in the new situation needs to be
formally investigated and we hope that the techniques used in this paper may still be
helpful to some extend. In the meantime, it is also important to think about the
strategy for purposefully creating a set of basic classifiers that are better suited to the
weighting schemes of RegionBoost.

References

1. Dietterich, T. G.: Machine Learning Research: Four Current Directions. AI Magazine. vol.
18 (4), pp. 97-136 (1997)

2. Breiman, L.: Bagging Predictors. Machine Learning. vol. 24 (2), pp. 123-140 (1996)
3. Breiman, L.: Random Forests. Machine Learning. vol. 45 (1), pp. 5-32 (2001)
4. Jordan, M. I. and Jacobs, R. A.: Hierarchical Mixtures of Experts and the EM Algorithm.

Neural Computation. vol. 6 (2), pp. 181-214 (1994)
5. Ting, K. M. and Witten, I. H.: Issues in Stacked Generalization. Journal of Artificial

Intelligence Research. vol. 10, pp. 271-289 (1999)
6. Tsymbal, A. and Puuronen, S.: Bagging and Boosting with Dynamic Integration of

Classifiers. In: Zighed, D. A. and Zytkow, H. J. K. J. M., (Eds.), 4th European
Conference of Principles of Data Mining and Knowledge Discovery, LNCS, vol. 1910,
pp. 116-125. Springer, Lyon, France (2000)

7. Tsymbal, A., Pechenizkiy, M., and Cunningham, P.: Dynamic Integration with Random
Forests. In: Fürnkranz, J., Scheffer, T., and Spiliopoulou, M., (Eds.), 17th European
Conference on Machine Learning, LNCS, vol. 4212, pp. 801-808. Springer, Berlin,
Germany (2006)

8. Schapire, R. E.: The Strength of Weak Learnability. Machine Learning. vol. 5 (2), pp.
197-227 (1990)

9. Maclin, R.: Boosting Classifiers Regionally. In: the 15th National Conference on
Artificial Intelligence, pp. 700-705, Madison, WI (1998)

10. Freund, Y. and Schapire, R. E.: A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting. Journal of Computer and System Sciences. vol.
55 (1), pp. 119-139 (1997)

11. Moerland, P. and Mayoraz, E.: DynaBoost: Combining Boosted Hypotheses in a
Dynamic Way. In: IDIAP-RR, Switzerland (1999)

12. Kwek, S. and Nguyen, C.: iBoost: Boosting Using an Instance-Based Exponential
Weighting Scheme. In: Elomaa, T., Mannila, H., and Toivonen, H., (Eds.), 13th European
Conference on Machine Learning, LNCS, vol. 2430, pp. 245-257. Springer, Helsinki,
Finland (2002)

13. Jin, R., Liu, Y., Si, L., Carbonell, J., and Hauptmann, A. G.: A New Boosting Algorithm
Using Input-Dependent Regularizer. In: the 20th International Conference on Machine
Learning, Washington, DC (2003)

14. Zhang, C.-X. and Zhang, J.-S.: A Local Boosting Algorithm for Solving Classification
Problems. Computational Statistics & Data Analysis. vol. 52, pp. 1928-1941 (2008)

15. Asuncion, A. and Newman, D. J.: UCI Machine Learning Repository,
http://www.ics.uci.edu/~mlearn/MLRepository.html. University of California, School of
Information and Computer Science (2007)

