
Accelerating BIRCH for Clustering Large Scale 
Streaming Data Using CUDA Dynamic Parallelism 

Jianqiang Dong, Fei Wang and Bo Yuan 

Intelligent Computing Lab, Division of Informatics  
Graduate School at Shenzhen, Tsinghua University 

Shenzhen 518055, P.R. China 
513712287@qq.com,wangfeifast@gmail.com,yuanb@sz.tsinghua.edu.cn 

Abstract. In this big data era, the capability of mining and analyzing large scale 
datasets is imperative. As data are becoming more abundant than ever before, 
data driven methods are playing a critical role in areas such as decision support 
and business intelligence. In this paper, we demonstrate how state-of-the-art 
GPUs and the Dynamic Parallelism feature of the latest CUDA platform can 
bring significant benefits to BIRCH, one of the most well-known clustering 
techniques for streaming data. Experiment results show that, on a number of 
benchmark problems, the GPU accelerated BIRCH can be made up to 154 times 
faster than the CPU version with good scalability and high accuracy. Our work 
suggests that massively parallel GPU computing is a promising and effective 
solution to the challenges of big data. 
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1 Introduction 

In the era of big data, modern organizations in almost all industries are facing 
increasingly growing amount of heterogeneous data at unprecedented speed. Each 
day, around 2.5 quintillion bytes of data1 are created such as sensor data, posts in 
social networks, digital images/videos, web search results, telecommunication 
records and financial transactions. The scale of the data available creates signifi-
cant challenges for traditional techniques to effectively store, transfer, visualize 
and analyze the data within a reasonable amount of time.  

Despite of the large number of existing data mining algorithms for tasks such 
as classification, clustering and frequent pattern analysis, there are two major 
issues that must be carefully addressed before they can be properly applied in the 
scenario of big data. Firstly, many algorithms assume that all data are stored in the 
main memory, which can be readily accessed. However, for real-world problems, 
the size of the data can easily exceed the memory capacity and, when multiple 
access to the dataset is required, the I/O cost may severely compromise the effi-

                                                              
1 http://www-01.ibm.com/software/data/bigdata/ 



ciency of the algorithm. To solve this issue, various data stream mining tech-
niques have been proposed, which only require reading the data once. They are 
particularly suitable for situations where the entire dataset is too large to fit into 
the main memory or the data come in a continuous manner.  

Secondly, most data mining algorithms are designed without explicitly taking 
parallel computing into account, although they may have inherent potential for 
parallelism. It is often assumed that each computing step is to be executed se-
quentially and no special efforts are devoted to harnessing the power of advanced 
multi-core and many-core computing devices that are becoming increasingly 
popular in the past decade. As a result, even with seemingly decent computational 
complexity in theory, the real running time of these algorithms on non-trivial 
datasets can be prohibitively intolerable. In fact, this issue is creating a large gap 
between academic research in data mining and industrial applications. 

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) [1, 2] 
is one of the most well-known hierarchical clustering algorithms for large scale 
data, which can incrementally cluster incoming data and requires only a single 
scan of the dataset in most cases. To make BIRCH more applicable on real-world 
problems, in this paper, we will investigate how to effectively accelerate BIRCH 
using parallel computing techniques.  

In addition to CPU-based parallel computing architecture such as MPI2 and 
OpenMP3, in recent years, GPU (Graphics Processing Unit) computing is quickly 
becoming a new powerhouse for providing high performance computing capabil-
ity at dramatically reduced cost and many GPU-based data mining algorithms 
have been proposed [3, 4]. Modern GPUs feature thousands of cores and support 
tens of thousands concurrent threads (many-core computing), making them spe-
cifically suitable for massively data parallel computing tasks. In many application 
areas such as fluid dynamics, financial engineering, life science and signal proc-
essing, researchers can often obtain 10~100× speedups on computing intensive 
problems by using standard workstations equipped with advanced GPU comput-
ing cards. In nowadays, the peak performance of high-end GPUs is over one 
TFLOPS (double-precision floating point) and the average cost to achieve one 
GFLOPS is already less than one dollar with GPU computing4. 

In the rest part of this paper, Section 2 gives a brief review on clustering algo-
rithms for large scale data, especially the BIRCH algorithm. Section 3 introduces 
CUDA5 (Compute Unified Device Architecture) and the Dynamic Parallelism 
technique, which brings incredible convenience to GPU computing with measur-
able performance improvement. The parallel implementation of BIRCH is de-
tailed in Section 4 along with the experiment specification. The main experiment 
results are presented in Section 5 and this paper is concluded in Section 6 with 
some discussions and directions for future work. 

                                                              
2 http://www.mcs.anl.gov/research/projects/mpi/ 
3 http://www.openmp.org/ 
4 http://en.wikipedia.org/wiki/FLOPS#Cost_of_computing/ 
5 https://developer.nvidia.com/cuda-toolkit/ 



2 Clustering Big Data 

Clustering is one of the most important unsupervised learning methods in pattern 
recognition and data mining [5]. There are mainly two categories of clustering 
methods: hierarchical clustering such as agglomerative clustering and partition-
based clustering such as K-means. For data stream mining [6-8], CluStream [9] is 
an important hierarchical clustering algorithm, which uses many micro clusters to 
form a better macro cluster. In the meantime, the extended K-Means algorithm 
and STREAM [10] are two good examples of partition-based methods.  

In BIRCH, a key concept is called clustering feature (CF), which is a triple 
holding the necessary information (e.g., linear sum and square sum) of all data 
points belonging to a certain cluster. The main procedure of BIRCH involves 
constructing a height balanced tree called CF-Tree. A parent node in the CF-Tree 
stores the summary of a large cluster while each child node maintains the infor-
mation of its own small cluster. There are two major parameters in BIRCH named 
B and T. B is the branching factor of the CF-Tree, indicating the maximum num-
ber of children of the parent node. T is the threshold used to determine whether a 
new coming data point can be absorbed by an existing cluster. 

In recent years, a few GPU implementations of hierarchical clustering algo-
rithms have been proposed. For example, a speedup of more than 100 times was 
achieved on the agglomerative clustering algorithm [11, 12]. In the meantime, 
MPI and the Thrust library6 have been used to accelerate BIRCH on various tasks 
such as text clustering problems [13, 14]. However, as Thrust can only parallelize 
certain components in BIRCH and it takes extra time to transfer data between 
host (CPU) and device (GPU), the overall speedup was only around 6 times. 

3 GPU Computing 

CUDA is a GPU programming environment developed by NVIDIA in 2007 and is 
the most widely used platform for GPU programming. The latest CUDA version 
is 5.5, which is the best match to GPUs with compute capability 3.5 such as Tesla 
K20 and GeForce GTX TITIAN.  Please refer to CUDA C Computing Guide7 and 
CUDA C Best Practices Guide8 for a comprehensive review. 

With the increasing popularity of CUDA, more and more computing libraries 
have been developed, such as Thrust, cuRAND9 and so on. Thrust is a CUDA 
STL programming model, which can handle the data on GPU in a C++ STL way, 
and consists of many commonly used algorithms such as sorting and reduction. 
cuRAND is a CUDA random number library, which can generate various kinds of 
random number in a very efficient way.  

                                                              
6 https://developer.nvidia.com/thrust/ 
7 http://docs.nvidia.com/cuda/cuda-c-programming-guide/ 
8 http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/ 
9 https://developer.nvidia.com/curand 



CUDA Dynamic Parallelism 10  and Kepler Compute Architecture 11  together 
create the state-of-the-art GPU computing environment, making GPU computing 
much more efficient and easier to code compared to the last generation GPU ar-
chitecture. Dynamic Parallelism offers exciting new capabilities by providing a 
mechanism for calling kernel functions from another kernel function so that GPU 
programs can be made more flexible and easier to synchronize. Fig. 1 shows an 
illustration of kernel launching in GPU. 

  

Fig. 1. Kernel launching with (right) and without dynamic parallelism (left) 

4 Methodology 

4.1 Standard BIRCH 

The main operations in BIRCH include the construction of the CF Tree and as-
signing data points to a nearby CF value. In Table 1, each data point has to go 
through step 3 and step 4. Most data points are allocated into an existing cluster 
(step 5.1) while some data points create a new CF (step 5.2), and only very few 
data points result in the splitting of the CF tree and creating a new CF (step 5.3).  

Table 1. The framework of BIRCH 

Step BIRCH 
1 Initialize the data source. 
2 For each data sample. 
3 While (not leaf) 
3.1 Find the nearest CF. 
3.2 Go down to the nearest CF sub-tree. 
4 Find the nearest CF in the leaf node. 
5 Compute the distance t between the data point and the nearest CF 
5.1 If t<=T then absorb. 
5.2 If t>T and Leaf node is not full, then add new CF.  
5.3 Else split the leaf node to allocate the new nodes. 

                                                              
10 http://docs.nvidia.com/cuda/cuda-dynamic-parallelism/index.html 
11 http://www.nvidia.com/object/nvidia-kepler.html 



4.2 GPU Accelerated BIRCH 

In the proposed GPU based BIRCH (GBIRCH), a master kernel is launched first. 
Next, several slave kernels are launched using CUDA Dynamic Parallelism, with 
each slave kernel dealing with a subset of the data samples in the GPU memory. 
The slave kernel is terminated after its associated data samples have all been 
processed. Tables 2-4 present the pseudo code of the master kernel, the slave ker-
nel, and the refinery kernel.  

Table 2. Master kernel 

Step GBIRCH_Master 
1 Set up the data source and partition the data. 
2 Build up the CF Tree. 
3 For each data block 
3.1 Call GBIRCH_Slave. 
4 Call GBIRCH_Refinary. 
5 Output the data point with its cluster information. 
6 Repeat steps 3~5, until all the data are processed. 

 
Slave kernels are responsible for most of the computing tasks in BIRCH. Each 

slave kernel fetches some data records from the master kernel and computes the 
distances and finds the nearest CF Leaf. If the data record can be absorbed by an 
existing cluster, the slave kernel does the job individually. If a new CF is to be 
added to the CF tree, or the CF tree needs to be split, the data will be transferred 
back to the master kernel. In this way, the parallel slave kernels can always keep 
working on the same and well organized CF tree.  

Table 3. Slave kernel 

Step GBIRCH_Slave                       Memory Allocation 
1 Get data from GBIRCH_Master.          Global to Shared 
2 For each data sample  
3 While (not leaf)                    Global to Shared 
3.1 Find the nearest CF.                Shared and Register 
3.2 Go down to the nearest CF sub-tree.   Global to Shared 
4 Find the nearest CF in the leaf node.     Shared and Register 
5 Compute t. On a single thread 
5.1 If t<=T, absorb the data sample.  
5.2 If t>T and Leaf is not full, add a new CF.   
5.3 Else save data point and submit to GBIRCH_Master.  

 
The refinery kernel keeps the CF tree accurate and well organized. Step 1 hap-

pens more frequently than other steps and is parallelized. Steps 2~4 are used to 
split the CF tree and no two threads can work on the CF tree at the same time 
(locking is required to ensure mutual exclusion). 



Table 4. Refinery kernel 

Step GBIRCH_Refinery 
1 Test the new CF Leaf from GBIRCH_Slave. If the CF parent is full, 

then add to split candidate. 
2 Each thread begins to split with a candidate, and lock the CF tree when 

it is used in this process. 
3 Roll up to split the higher level nodes, until reaching Root. 
4 Repeat steps 2~3, until all the candidates are split. 

 
In the CF tree, each node uses an array to store the CF values of its children 

and keeps parentID, childID and the number of children. In our work, the branch-
ing value was between 16~128. A smaller value may severely reduce the potential 
for parallelism while a larger value may result in a CF tree that is not deep enough 
to produce fine clustering granularity. 

4.3 Benchmark Datasets 

In the experiments, we used both synthetic and real datasets and all six datasets 
are widely used in data mining research. The first three datasets (DS1, DS2, DS3) 
were used in the original work on BIRCH [1, 2]. Each dataset consists of many 
centroids (from 100 to 1 million), and each centroid has 100 to 1 million data 
points. KDD CUP is a well-recognized annual international knowledge discovery 
and data mining competition. We used KDD CUP 98 data12 (191,781 samples, 
481 attributes), KDD CUP 99 dataset13 (4,898,431 samples, 42 attributes) and 
KDD CUP 2012 data14 (149,639,105 samples, 12 attributes) in our experiments. 

5 Experiment Results 

The software environment was: CUDA 5.0, Visual Studio 2010 and Windows 7. 
The hardware configuration was: Intel Core i5-2320 (CPU), 8GB RAM and 
NVIDIA Tesla K20 (Kepler Architecture GPU). 

On the six datasets, the maximum speedup value of GBIRCH was 154.29 on 
KDD CUP 2012 data set (Table 5). In general, the results were better on larger 
data sets as the CF tree construction process is difficult to be executed in parallel 
on GPU (as the dataset gets larger, more time is spent on the absorbing process 
rather than the construction of the CF tree).  

We also tested the scalability of GBIRCH using DS3. In Table 6, it is clear that 
as the number of records increases (the dimension was fixed to 2), the advantage 
of GBIRCH over BIRCH became more evident and as the dimension increased, 
the relative performance of GBIRCH was kept reasonably stable. Finally, the 
                                                              
12 http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html 
13 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html 
14 http://www.kddcup2012.org/c/kddcup2012-track2/data 



accuracy of GBIRCH was evaluated by measuring the percentage of data points 
that were assigned to the same cluster as in the CPU version. Table 7 shows that 
the impact of parallelization on the accuracy of BIRCH is trivial. 

Table 5. Comparison of running time (ms) 

Dataset CPU GPU Speedup 
DS1 498691 3983 125.20 
DS2 502145 4486 111.93 
DS3 501168 4296 116.66 
KDD CUP 98 21318 2796 7.62 
KDD CUP 99 632264 8512 74.28 
KDD CUP 2012 3268765 21186 154.29 

Table 6. Scalability test with regard to the number of records and dimensionality (ms) 

# of Data CPU GPU Speedup Dim CPU GPU Speedup 

1,000,000 12401 1602 7.74 2 12401 1602 7.74 
4,000,000 49820 1692 19.44 5 19185 2448 7.84 
12,000,000 150543 2088 72.10 10 28129 3918 7.18 
40,000,000 501168 4296 116.66 25 55224 8202 6.73 

Table 7. Accuracy of GBIRCH 

Dataset Total Number Correct Number  Accuracy 

KDD CUP 98 191,781 191,781 100% 
KDD CUP 99 4,898,431 4,897,012 99.9% 
KDD CUP 2012 149,639,105 148,527,097 99.3% 

6 Conclusions 

The major motivation of this paper was to investigate an important question in the 
era of big data: how to effectively handle the challenges from clustering large 
scale data. In our work, we chose BIRCH, a well-known clustering technique for 
streaming data, as an example to show how advanced GPUs and CUDA platform 
with the latest Dynamic Parallelism capability can significantly reduce the time 
required for clustering large datasets. Experiment results demonstrated that, with 
a careful parallel implementation of the major procedures in BIRCH and the help 
of Dynamic Parallelism as well as the smart use of GPU memory, GBIRCH 
achieved encouraging speedups from 7 to 154 times over the original BIRCH on 
six benchmark datasets. In the meantime, GBIRCH also featured satisfactory 
scalability with regard to the size and dimensionality of the dataset. 

There are a number of possible directions for future work. For example, we can 
implement the GPU versions of other popular data stream clustering algorithms 
such as CluStream or CURE [15]. The performance of GPU accelerated cluster-



ing algorithms on other data types such as text and XML or on high dimensional 
datasets is also worth investigation. 
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