
Accelerating BIRCH for Clustering Large Scale
Streaming Data Using CUDA Dynamic Parallelism

Jianqiang Dong, Fei Wang and Bo Yuan

Intelligent Computing Lab, Division of Informatics
Graduate School at Shenzhen, Tsinghua University

Shenzhen 518055, P.R. China
513712287@qq.com,wangfeifast@gmail.com,yuanb@sz.tsinghua.edu.cn

Abstract. In this big data era, the capability of mining and analyzing large scale
datasets is imperative. As data are becoming more abundant than ever before,
data driven methods are playing a critical role in areas such as decision support
and business intelligence. In this paper, we demonstrate how state-of-the-art
GPUs and the Dynamic Parallelism feature of the latest CUDA platform can
bring significant benefits to BIRCH, one of the most well-known clustering
techniques for streaming data. Experiment results show that, on a number of
benchmark problems, the GPU accelerated BIRCH can be made up to 154 times
faster than the CPU version with good scalability and high accuracy. Our work
suggests that massively parallel GPU computing is a promising and effective
solution to the challenges of big data.

Keywords: GPU, CUDA, Dynamic Parallelism, BIRCH, Big Data, Clustering

1 Introduction

In the era of big data, modern organizations in almost all industries are facing
increasingly growing amount of heterogeneous data at unprecedented speed. Each
day, around 2.5 quintillion bytes of data1 are created such as sensor data, posts in
social networks, digital images/videos, web search results, telecommunication
records and financial transactions. The scale of the data available creates signifi-
cant challenges for traditional techniques to effectively store, transfer, visualize
and analyze the data within a reasonable amount of time.

Despite of the large number of existing data mining algorithms for tasks such
as classification, clustering and frequent pattern analysis, there are two major
issues that must be carefully addressed before they can be properly applied in the
scenario of big data. Firstly, many algorithms assume that all data are stored in the
main memory, which can be readily accessed. However, for real-world problems,
the size of the data can easily exceed the memory capacity and, when multiple
access to the dataset is required, the I/O cost may severely compromise the effi-

1 http://www-01.ibm.com/software/data/bigdata/

ciency of the algorithm. To solve this issue, various data stream mining tech-
niques have been proposed, which only require reading the data once. They are
particularly suitable for situations where the entire dataset is too large to fit into
the main memory or the data come in a continuous manner.

Secondly, most data mining algorithms are designed without explicitly taking
parallel computing into account, although they may have inherent potential for
parallelism. It is often assumed that each computing step is to be executed se-
quentially and no special efforts are devoted to harnessing the power of advanced
multi-core and many-core computing devices that are becoming increasingly
popular in the past decade. As a result, even with seemingly decent computational
complexity in theory, the real running time of these algorithms on non-trivial
datasets can be prohibitively intolerable. In fact, this issue is creating a large gap
between academic research in data mining and industrial applications.

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) [1, 2]
is one of the most well-known hierarchical clustering algorithms for large scale
data, which can incrementally cluster incoming data and requires only a single
scan of the dataset in most cases. To make BIRCH more applicable on real-world
problems, in this paper, we will investigate how to effectively accelerate BIRCH
using parallel computing techniques.

In addition to CPU-based parallel computing architecture such as MPI2 and
OpenMP3, in recent years, GPU (Graphics Processing Unit) computing is quickly
becoming a new powerhouse for providing high performance computing capabil-
ity at dramatically reduced cost and many GPU-based data mining algorithms
have been proposed [3, 4]. Modern GPUs feature thousands of cores and support
tens of thousands concurrent threads (many-core computing), making them spe-
cifically suitable for massively data parallel computing tasks. In many application
areas such as fluid dynamics, financial engineering, life science and signal proc-
essing, researchers can often obtain 10~100× speedups on computing intensive
problems by using standard workstations equipped with advanced GPU comput-
ing cards. In nowadays, the peak performance of high-end GPUs is over one
TFLOPS (double-precision floating point) and the average cost to achieve one
GFLOPS is already less than one dollar with GPU computing4.

In the rest part of this paper, Section 2 gives a brief review on clustering algo-
rithms for large scale data, especially the BIRCH algorithm. Section 3 introduces
CUDA5 (Compute Unified Device Architecture) and the Dynamic Parallelism
technique, which brings incredible convenience to GPU computing with measur-
able performance improvement. The parallel implementation of BIRCH is de-
tailed in Section 4 along with the experiment specification. The main experiment
results are presented in Section 5 and this paper is concluded in Section 6 with
some discussions and directions for future work.

2 http://www.mcs.anl.gov/research/projects/mpi/
3 http://www.openmp.org/
4 http://en.wikipedia.org/wiki/FLOPS#Cost_of_computing/
5 https://developer.nvidia.com/cuda-toolkit/

2 Clustering Big Data

Clustering is one of the most important unsupervised learning methods in pattern
recognition and data mining [5]. There are mainly two categories of clustering
methods: hierarchical clustering such as agglomerative clustering and partition-
based clustering such as K-means. For data stream mining [6-8], CluStream [9] is
an important hierarchical clustering algorithm, which uses many micro clusters to
form a better macro cluster. In the meantime, the extended K-Means algorithm
and STREAM [10] are two good examples of partition-based methods.

In BIRCH, a key concept is called clustering feature (CF), which is a triple
holding the necessary information (e.g., linear sum and square sum) of all data
points belonging to a certain cluster. The main procedure of BIRCH involves
constructing a height balanced tree called CF-Tree. A parent node in the CF-Tree
stores the summary of a large cluster while each child node maintains the infor-
mation of its own small cluster. There are two major parameters in BIRCH named
B and T. B is the branching factor of the CF-Tree, indicating the maximum num-
ber of children of the parent node. T is the threshold used to determine whether a
new coming data point can be absorbed by an existing cluster.

In recent years, a few GPU implementations of hierarchical clustering algo-
rithms have been proposed. For example, a speedup of more than 100 times was
achieved on the agglomerative clustering algorithm [11, 12]. In the meantime,
MPI and the Thrust library6 have been used to accelerate BIRCH on various tasks
such as text clustering problems [13, 14]. However, as Thrust can only parallelize
certain components in BIRCH and it takes extra time to transfer data between
host (CPU) and device (GPU), the overall speedup was only around 6 times.

3 GPU Computing

CUDA is a GPU programming environment developed by NVIDIA in 2007 and is
the most widely used platform for GPU programming. The latest CUDA version
is 5.5, which is the best match to GPUs with compute capability 3.5 such as Tesla
K20 and GeForce GTX TITIAN. Please refer to CUDA C Computing Guide7 and
CUDA C Best Practices Guide8 for a comprehensive review.

With the increasing popularity of CUDA, more and more computing libraries
have been developed, such as Thrust, cuRAND9 and so on. Thrust is a CUDA
STL programming model, which can handle the data on GPU in a C++ STL way,
and consists of many commonly used algorithms such as sorting and reduction.
cuRAND is a CUDA random number library, which can generate various kinds of
random number in a very efficient way.

6 https://developer.nvidia.com/thrust/
7 http://docs.nvidia.com/cuda/cuda-c-programming-guide/
8 http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
9 https://developer.nvidia.com/curand

CUDA Dynamic Parallelism 10 and Kepler Compute Architecture 11 together
create the state-of-the-art GPU computing environment, making GPU computing
much more efficient and easier to code compared to the last generation GPU ar-
chitecture. Dynamic Parallelism offers exciting new capabilities by providing a
mechanism for calling kernel functions from another kernel function so that GPU
programs can be made more flexible and easier to synchronize. Fig. 1 shows an
illustration of kernel launching in GPU.

Fig. 1. Kernel launching with (right) and without dynamic parallelism (left)

4 Methodology

4.1 Standard BIRCH

The main operations in BIRCH include the construction of the CF Tree and as-
signing data points to a nearby CF value. In Table 1, each data point has to go
through step 3 and step 4. Most data points are allocated into an existing cluster
(step 5.1) while some data points create a new CF (step 5.2), and only very few
data points result in the splitting of the CF tree and creating a new CF (step 5.3).

Table 1. The framework of BIRCH

Step BIRCH
1 Initialize the data source.
2 For each data sample.
3 While (not leaf)
3.1 Find the nearest CF.
3.2 Go down to the nearest CF sub-tree.
4 Find the nearest CF in the leaf node.
5 Compute the distance t between the data point and the nearest CF
5.1 If t<=T then absorb.
5.2 If t>T and Leaf node is not full, then add new CF.
5.3 Else split the leaf node to allocate the new nodes.

10 http://docs.nvidia.com/cuda/cuda-dynamic-parallelism/index.html
11 http://www.nvidia.com/object/nvidia-kepler.html

4.2 GPU Accelerated BIRCH

In the proposed GPU based BIRCH (GBIRCH), a master kernel is launched first.
Next, several slave kernels are launched using CUDA Dynamic Parallelism, with
each slave kernel dealing with a subset of the data samples in the GPU memory.
The slave kernel is terminated after its associated data samples have all been
processed. Tables 2-4 present the pseudo code of the master kernel, the slave ker-
nel, and the refinery kernel.

Table 2. Master kernel

Step GBIRCH_Master
1 Set up the data source and partition the data.
2 Build up the CF Tree.
3 For each data block
3.1 Call GBIRCH_Slave.
4 Call GBIRCH_Refinary.
5 Output the data point with its cluster information.
6 Repeat steps 3~5, until all the data are processed.

Slave kernels are responsible for most of the computing tasks in BIRCH. Each

slave kernel fetches some data records from the master kernel and computes the
distances and finds the nearest CF Leaf. If the data record can be absorbed by an
existing cluster, the slave kernel does the job individually. If a new CF is to be
added to the CF tree, or the CF tree needs to be split, the data will be transferred
back to the master kernel. In this way, the parallel slave kernels can always keep
working on the same and well organized CF tree.

Table 3. Slave kernel

Step GBIRCH_Slave Memory Allocation
1 Get data from GBIRCH_Master. Global to Shared
2 For each data sample
3 While (not leaf) Global to Shared
3.1 Find the nearest CF. Shared and Register
3.2 Go down to the nearest CF sub-tree. Global to Shared
4 Find the nearest CF in the leaf node. Shared and Register
5 Compute t. On a single thread
5.1 If t<=T, absorb the data sample.
5.2 If t>T and Leaf is not full, add a new CF.
5.3 Else save data point and submit to GBIRCH_Master.

The refinery kernel keeps the CF tree accurate and well organized. Step 1 hap-

pens more frequently than other steps and is parallelized. Steps 2~4 are used to
split the CF tree and no two threads can work on the CF tree at the same time
(locking is required to ensure mutual exclusion).

Table 4. Refinery kernel

Step GBIRCH_Refinery
1 Test the new CF Leaf from GBIRCH_Slave. If the CF parent is full,

then add to split candidate.
2 Each thread begins to split with a candidate, and lock the CF tree when

it is used in this process.
3 Roll up to split the higher level nodes, until reaching Root.
4 Repeat steps 2~3, until all the candidates are split.

In the CF tree, each node uses an array to store the CF values of its children

and keeps parentID, childID and the number of children. In our work, the branch-
ing value was between 16~128. A smaller value may severely reduce the potential
for parallelism while a larger value may result in a CF tree that is not deep enough
to produce fine clustering granularity.

4.3 Benchmark Datasets

In the experiments, we used both synthetic and real datasets and all six datasets
are widely used in data mining research. The first three datasets (DS1, DS2, DS3)
were used in the original work on BIRCH [1, 2]. Each dataset consists of many
centroids (from 100 to 1 million), and each centroid has 100 to 1 million data
points. KDD CUP is a well-recognized annual international knowledge discovery
and data mining competition. We used KDD CUP 98 data12 (191,781 samples,
481 attributes), KDD CUP 99 dataset13 (4,898,431 samples, 42 attributes) and
KDD CUP 2012 data14 (149,639,105 samples, 12 attributes) in our experiments.

5 Experiment Results

The software environment was: CUDA 5.0, Visual Studio 2010 and Windows 7.
The hardware configuration was: Intel Core i5-2320 (CPU), 8GB RAM and
NVIDIA Tesla K20 (Kepler Architecture GPU).

On the six datasets, the maximum speedup value of GBIRCH was 154.29 on
KDD CUP 2012 data set (Table 5). In general, the results were better on larger
data sets as the CF tree construction process is difficult to be executed in parallel
on GPU (as the dataset gets larger, more time is spent on the absorbing process
rather than the construction of the CF tree).

We also tested the scalability of GBIRCH using DS3. In Table 6, it is clear that
as the number of records increases (the dimension was fixed to 2), the advantage
of GBIRCH over BIRCH became more evident and as the dimension increased,
the relative performance of GBIRCH was kept reasonably stable. Finally, the

12 http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html
13 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
14 http://www.kddcup2012.org/c/kddcup2012-track2/data

accuracy of GBIRCH was evaluated by measuring the percentage of data points
that were assigned to the same cluster as in the CPU version. Table 7 shows that
the impact of parallelization on the accuracy of BIRCH is trivial.

Table 5. Comparison of running time (ms)

Dataset CPU GPU Speedup
DS1 498691 3983 125.20
DS2 502145 4486 111.93
DS3 501168 4296 116.66
KDD CUP 98 21318 2796 7.62
KDD CUP 99 632264 8512 74.28
KDD CUP 2012 3268765 21186 154.29

Table 6. Scalability test with regard to the number of records and dimensionality (ms)

of Data CPU GPU Speedup Dim CPU GPU Speedup

1,000,000 12401 1602 7.74 2 12401 1602 7.74
4,000,000 49820 1692 19.44 5 19185 2448 7.84
12,000,000 150543 2088 72.10 10 28129 3918 7.18
40,000,000 501168 4296 116.66 25 55224 8202 6.73

Table 7. Accuracy of GBIRCH

Dataset Total Number Correct Number Accuracy

KDD CUP 98 191,781 191,781 100%
KDD CUP 99 4,898,431 4,897,012 99.9%
KDD CUP 2012 149,639,105 148,527,097 99.3%

6 Conclusions

The major motivation of this paper was to investigate an important question in the
era of big data: how to effectively handle the challenges from clustering large
scale data. In our work, we chose BIRCH, a well-known clustering technique for
streaming data, as an example to show how advanced GPUs and CUDA platform
with the latest Dynamic Parallelism capability can significantly reduce the time
required for clustering large datasets. Experiment results demonstrated that, with
a careful parallel implementation of the major procedures in BIRCH and the help
of Dynamic Parallelism as well as the smart use of GPU memory, GBIRCH
achieved encouraging speedups from 7 to 154 times over the original BIRCH on
six benchmark datasets. In the meantime, GBIRCH also featured satisfactory
scalability with regard to the size and dimensionality of the dataset.

There are a number of possible directions for future work. For example, we can
implement the GPU versions of other popular data stream clustering algorithms
such as CluStream or CURE [15]. The performance of GPU accelerated cluster-

ing algorithms on other data types such as text and XML or on high dimensional
datasets is also worth investigation.

Acknowledgement

This work was supported by the National Natural Science Foundation of China
(No. 60905030) and NVIDIA CUDA Teaching Center Program.

References

1. Zhang, T., Raghu, R., Miron, L.: BIRCH: An Efficient Data Clustering Method for Very
Large Databases. ACM SIGMOD Record, vol. 25(2), 103-114 (1996)

2. Zhang, T., Raghu, R., Miron, L.: BIRCH: A New Data Clustering Algorithm and Its Appli-
cations. Data Mining and Knowledge Discovery, vol. 1(2), 141-182 (1997)

3. Fang, W., Lau, K., Lu, M. et al.: Parallel Data Mining on Graphics Processors. Technical
Report HKUST-CS08-07 (2008)

4. Bai, H., He, L., Ouyang, D., Li, Z., Li, H.: K-Means on Commodity GPUs with CUDA. In:
2009 WRI World Congress on Computer Science and Information Engineering, pp. 651-
655 (2009)

5. Jain, A. K., Murty, M. N., Flynn, P. J.: Data Clustering: A Review. ACM Computing Sur-
veys, vol. 31(3), 264-323 (1999)

6. Mahdiraji, A. R.: Clustering Data Stream: A Survey of Algorithms. International Journal of
Knowledge-based and Intelligent Engineering Systems, vol. 13(2): 39-44 (2009)

7. Berkhin, P.: A Survey of Clustering Data Mining Techniques. In: Kogan, J. et al. (eds.),
Grouping Multidimensional Data, Springer, 25-71 (2006).

8. Barbará, D.: Requirements for Clustering Data Streams. ACM SIGKDD Explorations
Newsletter, vol. 3(2), 23-27 (2002)

9. Aggarwal, C.C., Han, J., Wang, J., Yu, P.: A Framework for Clustering Evolving Data
Streams. In: 29th International Conference on Very Large Data Bases, pp. 81-92 (2003)

10. O'Callaghan, L., Meyerson, A., Motwani, R., Mishra, N., Guha, S.: Streaming-Data Algo-
rithms for High-Quality Clustering. In: 18th International Conference on Data Engineering,
pp. 685-694 (2002)

11. Shalom, S. A., Dash, M.: Efficient Partitioning Based Hierarchical Agglomerative Cluster-
ing Using Graphics Accelerations with CUDA. International Journal of Artificial Intelli-
gence & Applications, vol. 4 (2), 13-33 (2013)

12. Shalom, S. A., Dash, M., Tue, M., Wilson, N.: Hierarchical Agglomerative Clustering Us-
ing Graphics Processor with Compute Unified Device Architecture. In: 2009 International
Conference on Signal Processing Systems, pp. 556-561 (2009)

13. Garg, A., Mangla, A., Gupta, N., Bhatnagar, V.: PBIRCH: A Scalable Parallel Clustering
Algorithm for Incremental Data. In: 10th IEEE International Database Engineering and
Applications Symposium, pp. 315-316 (2006)

14. Bagga, A., Toshniwal, D.: Parallelization of Hierarchical Text Clustering on Multi-core
CUDA Architecture. International Journal of Computer Science and Electrical Engineering,
vol. 1, 72-76 (2012)

15. Guha, S., Rastogi, R., Shim, K.: CURE: An Efficient Clustering Algorithm for Large Data-
bases. In: 1998 ACM International Conference on Management of Data, pp. 73-84 (1998)

