
An Efficient Parallel ISODATA Algorithm Based
on Kepler GPUs

Shiquan Yang, Jianqiang Dong and Bo Yuan
Intelligent Computing Lab, Division of Informatics
Graduate School at Shenzhen, Tsinghua University

Shenzhen 518055, P.R. China
yang244102596@gmail.com, 513712287@qq.com, yuanb@sz.tsinghua.edu.cn

Abstract—ISODATA is a well-known clustering algorithm
used in various areas. It employs a heuristic strategy allowing
the clusters based on the nearest neighbor rule to split and
merge as appropriate. However, since the volume of the data to
be clustered in real world is growing continuously, the
efficiency of serial ISODATA has become a serious practical
issue. The GPU (Graphics Processing Unit) is an emerging high
performance computing platform due to its highly parallel
multithreaded architecture. In this paper, we propose an
efficient parallel ISODATA algorithm based on the latest
Kepler GPUs and the dynamic parallelism feature in CUDA
(Compute Unified Device Architecture). Performance study
shows that our parallel ISODATA can achieve promising
speedup ratios and features favorable scalability compared to
the original algorithm.

Keywords—ISODATA; GPU; CUDA; Dynamic Parallelism;
Clustering

I. INTRODUCTION
 GPUs (Graphics Processing Units) have been widely
used in personal computers and workstations as the
coprocessors of CPUs on image rendering and video
processing tasks due to their tremendous computing power.
Since the procedure involving vertex and fragment
processing is computationally intensive and a data-parallel
task, GPUs are inherently designed as Single Instruction
Multiple Data (SIMD) processors with many cores, capable
of processing a large number of threads simultaneously. The
creation and management of the massively parallel threads
are handled by the hardware and developers can focus on the
parallelization of the problem of interest, rather than the
details of scheduling and managing threads. Also, GPU
programs often have good scalability and portability on
different GPUs.

 Due to the high availability of commodity GPUs and
their parallel processing power, GPUs have evolved into
powerful general purpose processing units (GPGPU). The
computational power and memory bandwidth of mainstream
GPUs are often an order of magnitude higher than CPUs of
the same time. For example, the theoretical computing
speeds (single precision) are over 300 GFLOPS for NVIDIA
GeForce 8800 GTX and 4 TFLOPS for NVIDIA Tesla
K20X (Kepler Architecture, Compute Capability 3.5), with
peak memory bandwidth 86.4 GB/s and 249.6 GB/s

respectively. Furthermore, the CUDA (Compute Unified
Device Architecture) programming model introduced by
NVIDIA in 2007 can make developers familiar with C
programming language easily take advantage of GPUs,
without the need to understand complex graphic APIs and
the detailed knowledge of graphics hardware [15, 16].

 In recent years, due to their enormous computational
horsepower, very high memory bandwidth and low cost,
researchers from various domains have been using GPUs as
a new high performance parallel computing platform and
achieved many encouraging results in areas such as
computational chemistry, computational fluid dynamics,
computational finance and numerical analysis [17, 18].

 Clustering analysis is an unsupervised machine learning
method used to group similar objects [11]. ISODATA
(Iterative Self-Organizing Data Analysis Techniques) [7, 12]
is a well-known clustering algorithm, which has been widely
applied to remote sensing images segmentation [20], SAR
imagery splitting [19] and palmprint recognition [14].
ISODATA is based on the distance similarity among objects
and, compared to other traditional clustering techniques such
as K-Means, it employs a heuristic strategy to enable the
clusters to merge and split, depending on factors such as the
distance between two clusters and the variance within a
cluster [8, 10].

 However, in the era of big data, the volume of data is
becoming considerably large. For example, due to the higher
resolution of remote sensing images, the size of a single
image can reach up to several GBs with tens of millions of
pixels. How to deal with such large amounts of data has
become a really challenging issue that must be properly
handled before ISODATA and other clustering techniques
can be effectively applied in the real world. In fact, in the
past decade, researchers have started to look for solutions
using high performance computing techniques, including
distributed systems and parallel computing [2, 3, 9, 13].

 For example, the message-passing interface (MPI)
environment was used to implement a distributed version of
ISODATA [4]. Two MapReduce based parallel ISODATA
algorithms have been proposed recently [1, 5]. They both
used a map function to cluster the objects and a reduce
function to update the centers. The difference is that the latter
one considers the parallelization of the splitting procedure.

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 2444

To the best of our knowledge, there is only one GPU-based
parallel ISODATA algorithm in which the distance
calculation and labeling steps were executed on the GPU [6].
However, the splitting procedure was ignored in their
implementation, which is one of the key features of
ISODATA.

 In this paper, we propose an efficient parallel ISODATA
algorithm based on the latest Kepler GPUs. Section II
presents the general descriptions of the original ISODATA,
the Kepler computing architecture and the CUDA
programming model. Detailed algorithm analysis is given in
Section III to show how to make the most of the parallel
computing power and programmable capability of CUDA
enabled GPUs using dynamic parallelism. The extensive
performance study is conducted in Section IV and this paper
is concluded in Section V.

II. PRELIMINARY

A. Serial ISODATA Algorithm
ISODATA is a widely used clustering algorithm in

pattern recognition and data mining. It features an iterative
process similar to the popular K-Means algorithm using
Euclidean distance as the similarity measure to partition the
data into different clusters. The unique feature of ISODATA
is that it allows the merging and splitting of clusters
dynamically. If the distance between two clusters is too
small, they will be merged to create a single cluster. If the
standard deviation within a cluster is over the user defined
threshold, it will be split into two clusters. Consequently,
ISODATA is more adaptive and flexible compared to the K-
Means algorithm and is expected to perform better on
different clustering problems.

Suppose that there is a set of samples and each sample
represents a point in the d dimensional space. The goal is to
assign the samples into different groups properly. Initially, c
random points are selected as the centroids of each cluster.
For each sample, its Euclidean distances to all centroids are
calculated. The Euclidean distance Dij between point xi and
centroid mj is defined as

()
d

2
ij ik jk

k=1

D = x - m∑ (1)

The samples are then partitioned into corresponding
clusters Гi (i=1, 2, …, c) according to the nearest neighbor
rule. If the number of samples within cluster Гi is less than
the threshold, this cluster will be eliminated and its samples
are assigned to the nearest clusters.

After that, the centroid of each cluster is recalculated. To
determine whether certain clusters need to be merged or
split, we need to further compute the average distances
within clusters and the average distances between data
points and centroids.

For the splitting procedure, the standard deviation vector
of each cluster is calculated to check whether a splitting
operation is required. The ith component of the standard
deviation vector of the jth cluster is defined as

()
k j

2
ij ki ji

xj

1= x - m
N

σ
∈Γ
∑ (2)

where xki represents the ith component of the kth sample and
mji represents the ith component of the jth centroid while Nj is
the number of samples in the jth cluster. If the maximum
component value of the standard deviation vector is over the
user-defined threshold, a splitting operation is activated.

As to the merging procedure, the distances between each
pair of centroids are computed. Cluster pairs with distances
less than the user-defined threshold are identified and sorted
in an ascending order. Usually two clusters with the smallest
distance are merged while it is possible to merge more
cluster pairs in the same iteration.

The centroids are updated after the merging and splitting
operations. Before the next iteration, the thresholds (inter-
cluster distance and intra-cluster distance) can be modified
as necessary by taking into account factors such as the
expected number of clusters, the minimum number of
samples in a cluster and the maximum iteration number.

B. CUDA Programming Model
CUDA is a parallel computing platform that enables

NVIDIA GPUs to execute programs written in standard C
with some extensions, dramatically reducing the challenges
for developers to exploit the computing power of GPUs. A
CUDA program invokes parallel functions called kernels that
execute across many parallel threads. These threads are
organized into thread blocks and each thread within a block
executes an instance of the kernel, with a unique thread ID
and block ID delivered by the CUDA runtime. A kernel
function corresponds to a grid of thread blocks when
launched by the host. A GPU executes one or more kernel
grids while a streaming multiprocessor executes several
thread blocks in groups of 32 threads called warps.

C. Kepler Compute Architecture
Although the last generation GPUs with Fermi

architecture has already provided extraordinary parallel
computing power, the latest generation of GPUs with the
Kepler architecture has raised the performance bar again
considerably. For example, GK110, the current flagship
model in the Kepler family, is not only faster but also more
energy efficient. It features over 4 TFLOPS (single
precision) theoretical peak performance, equivalent to more
than 15 GFLOPS per watt, three times as efficient as Tesla
C2070 (Fermi architecture).

A full Kepler GK110 implementation includes 15 SMX
units and six 64-bit memory controllers whereas different
products may vary in the specific numbers. Each of the
SMX unit contains 192 single precision CUDA cores, with
each one containing fully pipelined floating point and
integer arithmetic logic units. The total number of CUDA
cores within GK110 is over two thousand, more than four
times greater than that in GPUs with Fermi architecture. The
SMX schedules threads in groups of 32 called warps and
each SMX features four warp schedulers and eight
instruction dispatch units, allowing four warps to be issued
and executed concurrently. Kepler’s quad warp scheduler

2445

selects four warps each time and two independent
instructions per warp can be dispatched in each cycle.
Furthermore, unlike Fermi, Kepler allows double precision
instructions to be paired with other types of instructions.

Dynamic Parallelism is a ground breaking feature
currently supported by Kepler GPUs only. It allows a GPU
to generate new parallel tasks by itself and synchronize on
the results and schedule the work via dedicated hardware
path without the intervention of the CPU. In previous GPUs,
kernel functions can only be called from the host (CPU).
When the parallel task running on the GPU is completed,
the results are returned to the CPU and the GPU needs to
wait for the host to launch another kernel to execute.
However, with Kepler architecture, it is now possible to
initiate a kernel launching from another kernel executing on
the GPU. The parent kernel will immediately return back to
the main thread after launching the child kernels and
continue to execute until meeting an explicit device
synchronization function. The major advantage is that it is
easier to create and optimize recursive and data-dependent
execution patterns. Moreover, since additional workloads
can be executed simultaneously, GPU resources can be
exploited more thoroughly.

III. PARALLEL ISODATA ALGORITHM

A. Design Considerations
The serial ISODATA can become very time-consuming

when the volume of data to be clustered grows exceedingly
large. There are three major procedures in ISODATA,
including sample assigning, centroid updating and
merging/splitting of existing clusters. During the sample
assigning procedure, the Euclidean distances between
clusters and data points need to be computed with a time
complexity of О (NKD), where N, K and D are the number
of data points, the number of clusters and the dimensionality
respectively. The centroid updating operation calculates the
average data coordinates within a cluster. The splitting
procedure requires the standard deviation vectors and the
time complexity is О (ND).

It is clear that sample assigning and standard deviation
calculation are the two most computationally intensive parts
in the algorithm, especially when the number of data points
is large. Fortunately, they are both data independent
operations, making them particularly suitable for parallel
implementations.

B. Samples Assigning Based on GPU
The two operations in the sample assigning procedure

are the distance calculation and identifying the nearest
cluster to each data point. The data points to be clustered
and the centroids are transferred from the host (CPU)
memory to the global memory of the device (GPU). To take
advantage of the coalesced memory accessing feature of
device memory and locate elements with ease, data are
stored in a 1D format. The Euclidean distances are
computed by launching a kernel function specified by the
__global__ modifier. The kernel function creates blocks of
threads in the GPU, with each thread computing only the
distance between a single data point and a single centroid.

Fig.1. Point-wise thread blocks construction (a) and centroid-wise thread
blocks construction (b)

In our method, the resultant distances are organized into
an N-by-K array, where K is the number of centroids and N
is the number of data points. In this way, each element of
the distance array can be conveniently calculated by a single
thread and the GPU threads can be organized into a 2D
structure. The CUDA built-in variables threadIdx and
blockIdx are used to determine the unique ID of each thread
and the index of element in the distance matrix to be
processed by the thread. These threads can be organized into
blocks either in a centroid-wise manner or a point-wise
manner (Fig. 1). In a point-wise manner, each thread block
consists of threads calculating the distances between one or
more points and all the centroids, corresponding to the rows
of the distance matrix shown in Fig. 1(a). Similarly, the
centroid-wise blocks compose of threads calculating the
distances between the entire set of data points and one or
more centroids, corresponding to the columns of the
distance matrix shown in Fig. 1(b).

Note that in a point-wise block, the distances between a
data point and all centroids are obtained after the execution
of the block. Consequently, there is sufficient information
about the nearest centroids of these data points immediately
after the finishing of a thread block, without the need to wait
for the whole kernel to finish. In order to combine the
distance calculation and sample assigning steps together, the
point-wise block design is preferred.

Due to the bottleneck of memory bandwidth, the
overhead of data transfer between host and device is rather
expensive, especially when the amount of data is huge. To
minimize the transfer cost between CPU and GPU, the
cluster labels of data are identified in GPU too. Since we
employ a point-wise manner to construct thread blocks, each
block of threads has already calculated the distances of
certain data points to all centroids.

As a result, Label Kernel can be launched to identify the
labels of these data points immediately as long as a thread
block finishes the execution of Distance Kernel, as shown in
Fig. 2. This functionality can be implemented by exploiting
one of the novel features in CUDA 5.0 called Dynamic
Parallelism (Compute Capability: 3.5). In this way, distance
calculation and cluster labeling can be parallelized while

2446

increasing the utilization of GPU resources and reducing the
data transfer cost. After the cluster labels are determined,
they are transferred back to host memory followed by the
centroids updating operations.

Fig.2. Parallel execution of distance kernel and label kernel

C. Splitting Based on GPU
The most costly operation in the splitting procedure is

the calculation of standard deviation vector of each cluster.
Similar to the distance calculation, a K-by-D array is used to
store the variance values of each cluster, where K and D
stand for the number of centroids and the dimensionality of
data points respectively. The kernel launches a grid of
threads of the same size as the array, with each thread
responsible for the calculation of a single element of the
variance matrix. Since we need to find the maximum
element of the variance vector for each cluster, the centroid-
wise block design is adopted in order to parallelize variance
calculation and identifying the maximum variance element
using Dynamic Parallelism.

D. Memory Optimizations
For distance calculation, every thread within a block

needs to access the information of all centroids, which is
stored in the global memory. As a result, the first K threads
(K is the number of centroids) of the block are used to load
the required centroid information from global memory to
shared memory, which is much faster and directly accessible
by all threads in the same block. Instead of frequently
accessing the global memory with high latency, each thread
can get the centroids stored in the shared memory and the
I/O cost between GPU and the global memory can be
reduced significantly.

IV. EXPERIMENTS AND RESULTS
In this section, we thoroughly examined the performance

of the proposed GPU-based parallel ISODATA algorithm in
comparison to the serial version. Both the volume of data
and the number of clusters were varied to investigate the
scalability of the parallel ISODATA.

A. Experiment Setup
We implemented the parallel ISODATA in C using

Visual Studio 2012 with CUDA 5.5. A serial version of
ISODATA was also implemented in C. All experiments
were performed on two desktop computers: i) Intel Core i5
3.2 GHz CPU and NVIDIA GeForce GT 640 GPU (GK208);
ii) Intel Core i5 2.8 GHz CPU and NVIDIA Tesla K20 GPU.
The GT 640 GPU has 384 CUDA cores and 1024 MB
GDDR5 memory with memory bandwidth of 40 GB/s. The
K20 GPU features 2496 CUDA cores and 5GB GDDR5
memory with memory bandwidth of 208 GB/s.

The focus of experimental studies was on the execution
time of algorithms and the speedup in order to measure the
performance of the parallel ISODATA compared to the
serial version. The speedup was defined as the ratio between
the execution time of the serial program and the execution
time of the parallel version.

Since we were mainly interested in the efficiency instead
of the effectiveness of the clustering algorithms, synthetic
datasets were generated with randomly distributed data
points. All computation was performed using single
precision floating point operations.

B. Performance Study
In the first experiment, we compared the clustering

results of both algorithms to validate the correctness of
GPU-based ISODATA. There were totally 100K 10-
dimensional data points, clustered into 5 clusters. For each
cluster produced by the GPU, a corresponding cluster
produced by the CPU was identified. The two sets of data
points in the two clusters were compared and the number of
common data points was counted. It is clear that the
clustering results were extremely similar to each other, as
shown in Table I.

TABLE I.
COMPARISON OF CLUSTERING RESULTS BY CPU AND GPU

Cluster CPU GPU Common Data
Points

1 20554 20553 20553
2 20214 20221 20214
3 19732 19723 19723
4 20255 20257 20255
5 19245 19246 19245

In the second experiment, the number of clusters was 50

and the dimensionality was 10 while the number of data
points was varied from 2K to 1M. Fig. 3 shows that the
execution times per iteration were significantly reduced
using GPUs. Furthermore, GT 640 and K20 were 30 to 40
times faster than their CPU counterparts with 30K data
points and the speedup ratio kept increasing as the number
of data points became larger (Fig. 4).

2447

Fig. 3. Execution time per iteration (number of data points)

Fig. 4. Speedup ratio (number of data points)

Fig. 5. Execution time per iteration (dimensionality of data point)

Fig.6. Speedup ratio (dimensionality of data point)

Fig. 7. Execution time per iteration (number of clusters)

Fig. 8. Speedup ratio (number of clusters)

2448

In the third experiment, the dimensionality was changed
from 2 to 128 with 100K data points and 50 clusters. Fig. 5
shows that the GPU version scaled very well compared to
the CPU version. When the dimensionality was over 60, the
speedup ratios of K20 and GT 640 were more than 60 times
and 30 times respectively (Fig. 6).

Finally, various numbers of clusters were used as shown
in Fig. 7 and Fig. 8. The number of clusters ranged from 2
to 50 with 100K 10-dimensional data points. When the
number of clusters was less than 10, the speedup ratio was
around 5 to 15 times for K20 and 4 to 10 times for GT 640.
When the number of clusters was over 30, the ratio
increased to more than 35 and 25 times for K20 and GT 640
respectively. Note that when there were 50 clusters, K20
was nearly 45 times faster than its CPU counterpart.

Note that due to various random factors, the execution
time of the algorithm may vary slightly in each trial. As a
result, the speedup ratios may not be fully consistent even
with the same experiment setting. In the above experiments,
all results were averaged over 5 independent trials.

V. CONCLUSION
In this paper, we presented a highly efficient parallel

ISODATA algorithm based on advanced Kepler GPUs. The
sample assigning and variance calculating procedures were
executed on the GPU, which are the most computationally
intensive components of ISODATA. Two thread block
designs were proposed to better parallelize the operations on
the GPU and Dynamic Parallelism, which is the latest
CUDA feature supported by Kepler GPUs was exploited to
make the most of available GPU resources. Furthermore,
shared memory was employed to reduce the global memory
access traffic and I/O bottleneck.

Experimental results confirmed that the GPU accelerated
ISODATA and the original ISODATA produced extremely
similar clustering results and the difference was trivial.
More importantly, the parallel ISODATA with two NVIDIA
Kepler GPUs: GT 640 (consumer-level, less than $100) and
K20 (high-end) achieved competitive performance in terms
of speedup and scalability with regard to the number of data
points, dimensionality and the number of clusters.

ACKNOWLEDGMENT
This work was supported by the NVIDIA CUDA

Teaching Center awarded to Tsinghua University.

REFERENCES
[1] C. Wang, C. R. Wang, and X. Song, “A MapReduce based

ISODATA algorithm,” in Proceedings of 2012 3rd IEEE
International Conference on Intelligent Control and Information
Processing, July 2012, pp. 765-768.

[2] N. Memarsadeghi, D. M. Mout, N. S. Netanyahu, and J. L. Moigne,
“A fast implementation of the ISODATA clustering algorithm,”
International Journal of Computational Geometry & Applications,
vol. 17, no. 1, pp. 71-103, February 2007.

[3] G. A. Riccardi, and P. H. Schow, “Adaptation of the ISODATA
clustering algorithm for vector supercomputer execution,” in
Proceedings of Supercomputing, vol. 2, pp. 141-150, 1988.

[4] M. K. Dhodhi, J. A. Saghri, I. Ahamad, and R. UI-Mustafa, “D-
ISODATA: a distributed algorithm for unsupervised classification of
remotely sensed data on network of workstations,” Journal of
Parallel and Distributed Computing, vol. 59, no. 2, pp. 280-301,
1999.

[5] B. Li, H. Zhao, and Z. H. Lv, “Parallel ISODATA clustering of
remote sensing images based on MapReduce,” in Proceedings of
2010 IEEE International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery, Oct. 2010, pp. 380-383.

[6] F. Ye, and X. Shi, “Parallelizing ISODATA algorithm for
unsupervised image classification on GPU,” in Modern Accelerator
Technologies for Geographic Information Science, Springer, 2013,
pp. 145-156.

[7] G. H. Ball, and D. J. Hall, “ISODATA, a novel method of data
analysis and pattern classification,” Stanford Research Institute,
Menlo Park, California, April 1965.

[8] S. Phillips, “Reducing the computation time of the ISODATA and K-
means unsupervised classification algorithms,” in Proceedings of
2002 IEEE International Conference on Geoscience and Remote
Sensing Symposium, 2002, pp. 1627-1629.

[9] N. B. Venkateswarlu, and P. Raju, “Fast ISODATA clustering
algorithms,” Pattern Recognition, vol. 25, no. 3, pp. 335-342, 1992.

[10] M. Merzougui, M. Nasri, and B. Bouali, “ISODATA classification
with parameters estimated by evolutionary approach,” in Proceedings
of 2013 8th IEEE International Conference on Intelligient Systems:
Theories and Applications, May 2013, pp. 1-7.

[11] A. K. Jain, and R. C. Dubes, Algorithms for clustering data. Prentice-
Hall, Inc., Upper Saddle River, NJ, 1988.

[12] G. H. Ball, and D. J. Hall, “A clustering technique for summarizing
multivariate data,” Behavioral Science, vol. 12, no. 2, pp. 153-155,
March 1967.

[13] H. T. Bai, L. L. He and Z. S. Li, “K-means on commodity GPUs with
CUDA,” in Proceedings of 2009 IEEE World Congress on Computer
Science and Information Engineering, March 2009, pp. 651-655.

[14] F. Liu, C. X. Lin, P. Y. Cui, and T. Dong, “Palmprint recognition
based on ISODATA clustering algorithm,” in Proceedings of 2007
IEEE International Conference on Wavelet Analysis and Pattern
Recognition, Nov. 2007, pp. 1129-1133.

[15] D. B. Kirk, and W. M. Hwu, Programming massively parallel
processors: a hands-on approach. Morgan Kaufmann, 2010.

[16] CUDA. Available: https://developer.nvidia.com/cuda-toolkit
[17] NVIDIA Tesla K20-K20X GPU Accelerators Benchmarks.

Available: http://www.nvidia.com/docs/IO/122874/K20-and-K20X-
applicationperformance-technical-brief.pdf

[18] CUDA Research and Applications. Available:
https://developer.nvidia.com/cuda-action-research-apps

[19] Y. F. Cao, C. X. Su, and J. J. Liang, “Efficient big-size light region
splitting scheme for high-resolution SAR imagery,” in Proceedings of
the International Conference on Information Engineering and
Applications, vol. 2, Part VII, pp. 515-520, 2013.

[20] M. M. Awad, “Improving satellite image segmentation using
evolutionary computation,” American Journal of Remote Sensing,
vol. 1, no. 2, pp. 13-20, 2013.

2449

