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Abstract—ISODATA is a well-known clustering algorithm 
used in various areas. It employs a heuristic strategy allowing 
the clusters based on the nearest neighbor rule to split and 
merge as appropriate. However, since the volume of the data to 
be clustered in real world is growing continuously, the 
efficiency of serial ISODATA has become a serious practical 
issue. The GPU (Graphics Processing Unit) is an emerging high 
performance computing platform due to its highly parallel 
multithreaded architecture. In this paper, we propose an 
efficient parallel ISODATA algorithm based on the latest 
Kepler GPUs and the dynamic parallelism feature in CUDA 
(Compute Unified Device Architecture). Performance study 
shows that our parallel ISODATA can achieve promising 
speedup ratios and features favorable scalability compared to 
the original algorithm.  

Keywords—ISODATA; GPU; CUDA; Dynamic Parallelism; 
Clustering 

I. INTRODUCTION  
 GPUs (Graphics Processing Units) have been widely 
used in personal computers and workstations as the 
coprocessors of CPUs on image rendering and video 
processing tasks due to their tremendous computing power. 
Since the procedure involving vertex and fragment 
processing is computationally intensive and a data-parallel 
task, GPUs are inherently designed as Single Instruction 
Multiple Data (SIMD) processors with many cores, capable 
of processing a large number of threads simultaneously. The 
creation and management of the massively parallel threads 
are handled by the hardware and developers can focus on the 
parallelization of the problem of interest, rather than the 
details of scheduling and managing threads. Also, GPU 
programs often have good scalability and portability on 
different GPUs. 

 Due to the high availability of commodity GPUs and 
their parallel processing power, GPUs have evolved into 
powerful general purpose processing units (GPGPU). The 
computational power and memory bandwidth of mainstream 
GPUs are often an order of magnitude higher than CPUs of 
the same time. For example, the theoretical computing 
speeds (single precision) are over 300 GFLOPS for NVIDIA 
GeForce 8800 GTX and 4 TFLOPS for NVIDIA Tesla 
K20X (Kepler Architecture, Compute Capability 3.5), with 
peak memory bandwidth 86.4 GB/s and 249.6 GB/s 

respectively. Furthermore, the CUDA (Compute Unified 
Device Architecture) programming model introduced by 
NVIDIA in 2007 can make developers familiar with C 
programming language easily take advantage of GPUs, 
without the need to understand complex graphic APIs and 
the detailed knowledge of graphics hardware [15, 16]. 

 In recent years, due to their enormous computational 
horsepower, very high memory bandwidth and low cost, 
researchers from various domains have been using GPUs as 
a new high performance parallel computing platform and 
achieved many encouraging results in areas such as 
computational chemistry, computational fluid dynamics, 
computational finance and numerical analysis [17, 18]. 

 Clustering analysis is an unsupervised machine learning 
method used to group similar objects [11]. ISODATA 
(Iterative Self-Organizing Data Analysis Techniques) [7, 12] 
is a well-known clustering algorithm, which has been widely 
applied to remote sensing images segmentation [20], SAR 
imagery splitting [19] and palmprint recognition [14]. 
ISODATA is based on the distance similarity among objects 
and, compared to other traditional clustering techniques such 
as K-Means, it employs a heuristic strategy to enable the 
clusters to merge and split, depending on factors such as the 
distance between two clusters and the variance within a 
cluster [8, 10]. 

 However, in the era of big data, the volume of data is 
becoming considerably large. For example, due to the higher 
resolution of remote sensing images, the size of a single 
image can reach up to several GBs with tens of millions of 
pixels. How to deal with such large amounts of data has 
become a really challenging issue that must be properly 
handled before ISODATA and other clustering techniques 
can be effectively applied in the real world. In fact, in the 
past decade, researchers have started to look for solutions 
using high performance computing techniques, including 
distributed systems and parallel computing [2, 3, 9, 13]. 

 For example, the message-passing interface (MPI) 
environment was used to implement a distributed version of 
ISODATA [4]. Two MapReduce based parallel ISODATA 
algorithms have been proposed recently [1, 5]. They both 
used a map function to cluster the objects and a reduce 
function to update the centers. The difference is that the latter 
one considers the parallelization of the splitting procedure. 
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To the best of our knowledge, there is only one GPU-based 
parallel ISODATA algorithm in which the distance 
calculation and labeling steps were executed on the GPU [6]. 
However, the splitting procedure was ignored in their 
implementation, which is one of the key features of 
ISODATA. 

 In this paper, we propose an efficient parallel ISODATA 
algorithm based on the latest Kepler GPUs. Section II 
presents the general descriptions of the original ISODATA, 
the Kepler computing architecture and the CUDA 
programming model. Detailed algorithm analysis is given in 
Section III to show how to make the most of the parallel 
computing power and programmable capability of CUDA 
enabled GPUs using dynamic parallelism. The extensive 
performance study is conducted in Section IV and this paper 
is concluded in Section V. 

II. PRELIMINARY 

A. Serial ISODATA Algorithm 
ISODATA is a widely used clustering algorithm in 

pattern recognition and data mining. It features an iterative 
process similar to the popular K-Means algorithm using 
Euclidean distance as the similarity measure to partition the 
data into different clusters. The unique feature of ISODATA 
is that it allows the merging and splitting of clusters 
dynamically. If the distance between two clusters is too 
small, they will be merged to create a single cluster. If the 
standard deviation within a cluster is over the user defined 
threshold, it will be split into two clusters. Consequently, 
ISODATA is more adaptive and flexible compared to the K-
Means algorithm and is expected to perform better on 
different clustering problems. 

Suppose that there is a set of samples and each sample 
represents a point in the d dimensional space. The goal is to 
assign the samples into different groups properly. Initially, c 
random points are selected as the centroids of each cluster. 
For each sample, its Euclidean distances to all centroids are 
calculated. The Euclidean distance Dij between point xi and 
centroid mj is defined as 

( )
d

2
ij ik jk

k=1

D = x - m∑  (1) 

The samples are then partitioned into corresponding 
clusters Гi (i=1, 2, …, c) according to the nearest neighbor 
rule. If the number of samples within cluster Гi is less than 
the threshold, this cluster will be eliminated and its samples 
are assigned to the nearest clusters. 

After that, the centroid of each cluster is recalculated. To 
determine whether certain clusters need to be merged or 
split, we need to further compute the average distances 
within clusters and the average distances between data 
points and centroids.  

For the splitting procedure, the standard deviation vector 
of each cluster is calculated to check whether a splitting 
operation is required. The ith component of the standard 
deviation vector of the jth cluster is defined as 
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where xki represents the ith component of the kth sample and 
mji represents the ith component of the jth centroid while Nj is 
the number of samples in the jth cluster. If the maximum 
component value of the standard deviation vector is over the 
user-defined threshold, a splitting operation is activated. 

As to the merging procedure, the distances between each 
pair of centroids are computed. Cluster pairs with distances 
less than the user-defined threshold are identified and sorted 
in an ascending order. Usually two clusters with the smallest 
distance are merged while it is possible to merge more 
cluster pairs in the same iteration. 

The centroids are updated after the merging and splitting 
operations. Before the next iteration, the thresholds (inter-
cluster distance and intra-cluster distance) can be modified 
as necessary by taking into account factors such as the 
expected number of clusters, the minimum number of 
samples in a cluster and the maximum iteration number. 

B. CUDA Programming Model 
CUDA is a parallel computing platform that enables 

NVIDIA GPUs to execute programs written in standard C 
with some extensions, dramatically reducing the challenges 
for developers to exploit the computing power of GPUs. A 
CUDA program invokes parallel functions called kernels that 
execute across many parallel threads. These threads are 
organized into thread blocks and each thread within a block 
executes an instance of the kernel, with a unique thread ID 
and block ID delivered by the CUDA runtime. A kernel 
function corresponds to a grid of thread blocks when 
launched by the host. A GPU executes one or more kernel 
grids while a streaming multiprocessor executes several 
thread blocks in groups of 32 threads called warps.  

C. Kepler Compute Architecture 
Although the last generation GPUs with Fermi 

architecture has already provided extraordinary parallel 
computing power, the latest generation of GPUs with the 
Kepler architecture has raised the performance bar again 
considerably. For example, GK110, the current flagship 
model in the Kepler family, is not only faster but also more 
energy efficient. It features over 4 TFLOPS (single 
precision) theoretical peak performance, equivalent to more 
than 15 GFLOPS per watt, three times as efficient as Tesla 
C2070 (Fermi architecture). 

A full Kepler GK110 implementation includes 15 SMX 
units and six 64-bit memory controllers whereas different 
products may vary in the specific numbers. Each of the 
SMX unit contains 192 single precision CUDA cores, with 
each one containing fully pipelined floating point and 
integer arithmetic logic units. The total number of CUDA 
cores within GK110 is over two thousand, more than four 
times greater than that in GPUs with Fermi architecture. The 
SMX schedules threads in groups of 32 called warps and 
each SMX features four warp schedulers and eight 
instruction dispatch units, allowing four warps to be issued 
and executed concurrently. Kepler’s quad warp scheduler 
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selects four warps each time and two independent 
instructions per warp can be dispatched in each cycle. 
Furthermore, unlike Fermi, Kepler allows double precision 
instructions to be paired with other types of instructions. 

Dynamic Parallelism is a ground breaking feature 
currently supported by Kepler GPUs only. It allows a GPU 
to generate new parallel tasks by itself and synchronize on 
the results and schedule the work via dedicated hardware 
path without the intervention of the CPU. In previous GPUs, 
kernel functions can only be called from the host (CPU). 
When the parallel task running on the GPU is completed, 
the results are returned to the CPU and the GPU needs to 
wait for the host to launch another kernel to execute. 
However, with Kepler architecture, it is now possible to 
initiate a kernel launching from another kernel executing on 
the GPU. The parent kernel will immediately return back to 
the main thread after launching the child kernels and 
continue to execute until meeting an explicit device 
synchronization function. The major advantage is that it is 
easier to create and optimize recursive and data-dependent 
execution patterns. Moreover, since additional workloads 
can be executed simultaneously, GPU resources can be 
exploited more thoroughly. 

III. PARALLEL ISODATA ALGORITHM 

A. Design Considerations 
The serial ISODATA can become very time-consuming 

when the volume of data to be clustered grows exceedingly 
large. There are three major procedures in ISODATA, 
including sample assigning, centroid updating and 
merging/splitting of existing clusters. During the sample 
assigning procedure, the Euclidean distances between 
clusters and data points need to be computed with a time 
complexity of О (NKD), where N, K and D are the number 
of data points, the number of clusters and the dimensionality 
respectively. The centroid updating operation calculates the 
average data coordinates within a cluster. The splitting 
procedure requires the standard deviation vectors and the 
time complexity is О (ND).  

It is clear that sample assigning and standard deviation 
calculation are the two most computationally intensive parts 
in the algorithm, especially when the number of data points 
is large. Fortunately, they are both data independent 
operations, making them particularly suitable for parallel 
implementations. 

B. Samples Assigning Based on GPU 
The two operations in the sample assigning procedure 

are the distance calculation and identifying the nearest 
cluster to each data point. The data points to be clustered 
and the centroids are transferred from the host (CPU) 
memory to the global memory of the device (GPU). To take 
advantage of the coalesced memory accessing feature of 
device memory and locate elements with ease, data are 
stored in a 1D format. The Euclidean distances are 
computed by launching a kernel function specified by the 
__global__ modifier. The kernel function creates blocks of 
threads in the GPU, with each thread computing only the 
distance between a single data point and a single centroid. 

Fig.1. Point-wise thread blocks construction (a) and centroid-wise thread 
blocks construction (b) 

In our method, the resultant distances are organized into 
an N-by-K array, where K is the number of centroids and N 
is the number of data points. In this way, each element of 
the distance array can be conveniently calculated by a single 
thread and the GPU threads can be organized into a 2D 
structure. The CUDA built-in variables threadIdx and 
blockIdx are used to determine the unique ID of each thread 
and the index of element in the distance matrix to be 
processed by the thread. These threads can be organized into 
blocks either in a centroid-wise manner or a point-wise 
manner (Fig. 1). In a point-wise manner, each thread block 
consists of threads calculating the distances between one or 
more points and all the centroids, corresponding to the rows 
of the distance matrix shown in Fig. 1(a). Similarly, the 
centroid-wise blocks compose of threads calculating the 
distances between the entire set of data points and one or 
more centroids, corresponding to the columns of the 
distance matrix shown in Fig. 1(b). 

Note that in a point-wise block, the distances between a 
data point and all centroids are obtained after the execution 
of the block. Consequently, there is sufficient information 
about the nearest centroids of these data points immediately 
after the finishing of a thread block, without the need to wait 
for the whole kernel to finish. In order to combine the 
distance calculation and sample assigning steps together, the 
point-wise block design is preferred. 

Due to the bottleneck of memory bandwidth, the 
overhead of data transfer between host and device is rather 
expensive, especially when the amount of data is huge. To 
minimize the transfer cost between CPU and GPU, the 
cluster labels of data are identified in GPU too. Since we 
employ a point-wise manner to construct thread blocks, each 
block of threads has already calculated the distances of 
certain data points to all centroids.  

As a result, Label Kernel can be launched to identify the 
labels of these data points immediately as long as a thread 
block finishes the execution of Distance Kernel, as shown in 
Fig. 2. This functionality can be implemented by exploiting 
one of the novel features in CUDA 5.0 called Dynamic 
Parallelism (Compute Capability: 3.5). In this way, distance 
calculation and cluster labeling can be parallelized while 
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increasing the utilization of GPU resources and reducing the 
data transfer cost. After the cluster labels are determined, 
they are transferred back to host memory followed by the 
centroids updating operations. 

Fig.2. Parallel execution of distance kernel and label kernel 

C. Splitting Based on GPU 
The most costly operation in the splitting procedure is 

the calculation of standard deviation vector of each cluster. 
Similar to the distance calculation, a K-by-D array is used to 
store the variance values of each cluster, where K and D 
stand for the number of centroids and the dimensionality of 
data points respectively. The kernel launches a grid of 
threads of the same size as the array, with each thread 
responsible for the calculation of a single element of the 
variance matrix. Since we need to find the maximum 
element of the variance vector for each cluster, the centroid-
wise block design is adopted in order to parallelize variance 
calculation and identifying the maximum variance element 
using Dynamic Parallelism. 

D. Memory Optimizations 
For distance calculation, every thread within a block 

needs to access the information of all centroids, which is 
stored in the global memory. As a result, the first K threads 
(K is the number of centroids) of the block are used to load 
the required centroid information from global memory to 
shared memory, which is much faster and directly accessible 
by all threads in the same block. Instead of frequently 
accessing the global memory with high latency, each thread 
can get the centroids stored in the shared memory and the 
I/O cost between GPU and the global memory can be 
reduced significantly. 

IV. EXPERIMENTS AND RESULTS 
In this section, we thoroughly examined the performance 

of the proposed GPU-based parallel ISODATA algorithm in 
comparison to the serial version. Both the volume of data 
and the number of clusters were varied to investigate the 
scalability of the parallel ISODATA. 

A. Experiment Setup 
We implemented the parallel ISODATA in C using 

Visual Studio 2012 with CUDA 5.5. A serial version of 
ISODATA was also implemented in C. All experiments 
were performed on two desktop computers: i) Intel Core i5 
3.2 GHz CPU and NVIDIA GeForce GT 640 GPU (GK208); 
ii) Intel Core i5 2.8 GHz CPU and NVIDIA Tesla K20 GPU. 
The GT 640 GPU has 384 CUDA cores and 1024 MB 
GDDR5 memory with memory bandwidth of 40 GB/s. The 
K20 GPU features 2496 CUDA cores and 5GB GDDR5 
memory with memory bandwidth of 208 GB/s. 

The focus of experimental studies was on the execution 
time of algorithms and the speedup in order to measure the 
performance of the parallel ISODATA compared to the 
serial version. The speedup was defined as the ratio between 
the execution time of the serial program and the execution 
time of the parallel version. 

Since we were mainly interested in the efficiency instead 
of the effectiveness of the clustering algorithms, synthetic 
datasets were generated with randomly distributed data 
points. All computation was performed using single 
precision floating point operations. 

B. Performance Study 
In the first experiment, we compared the clustering 

results of both algorithms to validate the correctness of 
GPU-based ISODATA. There were totally 100K 10-
dimensional data points, clustered into 5 clusters. For each 
cluster produced by the GPU, a corresponding cluster 
produced by the CPU was identified. The two sets of data 
points in the two clusters were compared and the number of 
common data points was counted. It is clear that the 
clustering results were extremely similar to each other, as 
shown in Table I. 

TABLE I.   
COMPARISON OF CLUSTERING RESULTS BY CPU AND GPU 

Cluster CPU GPU Common Data 
Points 

1 20554 20553 20553 
2 20214 20221 20214 
3 19732 19723 19723 
4 20255 20257 20255 
5 19245 19246 19245 

 
In the second experiment, the number of clusters was 50 

and the dimensionality was 10 while the number of data 
points was varied from 2K to 1M. Fig. 3 shows that the 
execution times per iteration were significantly reduced 
using GPUs. Furthermore, GT 640 and K20 were 30 to 40 
times faster than their CPU counterparts with 30K data 
points and the speedup ratio kept increasing as the number 
of data points became larger (Fig. 4). 
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Fig. 3.  Execution time per iteration (number of data points) 
 

 
Fig. 4.  Speedup ratio (number of data points) 
 

 
Fig. 5.  Execution time per iteration (dimensionality of data point) 
 
 
 

 
Fig.6.  Speedup ratio (dimensionality of data point) 
 

 
Fig. 7.  Execution time per iteration (number of clusters) 
 

 
Fig. 8.  Speedup ratio (number of clusters) 
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In the third experiment, the dimensionality was changed 
from 2 to 128 with 100K data points and 50 clusters. Fig. 5 
shows that the GPU version scaled very well compared to 
the CPU version. When the dimensionality was over 60, the 
speedup ratios of K20 and GT 640 were more than 60 times 
and 30 times respectively (Fig. 6). 

Finally, various numbers of clusters were used as shown 
in Fig. 7 and Fig. 8. The number of clusters ranged from 2 
to 50 with 100K 10-dimensional data points. When the 
number of clusters was less than 10, the speedup ratio was 
around 5 to 15 times for K20 and 4 to 10 times for GT 640. 
When the number of clusters was over 30, the ratio 
increased to more than 35 and 25 times for K20 and GT 640 
respectively. Note that when there were 50 clusters, K20 
was nearly 45 times faster than its CPU counterpart. 

Note that due to various random factors, the execution 
time of the algorithm may vary slightly in each trial. As a 
result, the speedup ratios may not be fully consistent even 
with the same experiment setting. In the above experiments, 
all results were averaged over 5 independent trials. 

V. CONCLUSION 
In this paper, we presented a highly efficient parallel 

ISODATA algorithm based on advanced Kepler GPUs. The 
sample assigning and variance calculating procedures were 
executed on the GPU, which are the most computationally 
intensive components of ISODATA. Two thread block 
designs were proposed to better parallelize the operations on 
the GPU and Dynamic Parallelism, which is the latest 
CUDA feature supported by Kepler GPUs was exploited to 
make the most of available GPU resources. Furthermore, 
shared memory was employed to reduce the global memory 
access traffic and I/O bottleneck. 

Experimental results confirmed that the GPU accelerated 
ISODATA and the original ISODATA produced extremely 
similar clustering results and the difference was trivial. 
More importantly, the parallel ISODATA with two NVIDIA 
Kepler GPUs: GT 640 (consumer-level, less than $100) and 
K20 (high-end) achieved competitive performance in terms 
of speedup and scalability with regard to the number of data 
points, dimensionality and the number of clusters. 
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