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For streaming data that arrive continuously such as multimedia data and financial transactions, cluster-
ing algorithms are typically allowed to scan the data set only once. Existing research in this domain
mainly focuses on improving the accuracy of clustering. In this paper, a novel density-based hierarchical
clustering scheme for streaming data is proposed in order to improve both accuracy and effectiveness; it
is based on the agglomerative clustering framework. Traditionally, clustering algorithms for streaming
data often use the cluster center to represent the whole cluster when conducting cluster merging, which
may lead to unsatisfactory results. We argue that even if the data set is accessed only once, some param-
eters, such as the variance within cluster, the intra-cluster density and the inter-cluster distance, can be
calculated accurately. This may bring measurable benefits to the process of cluster merging. Furthermore,
we employ a general framework that can incorporate different criteria and, given the same criteria, will
produce similar clustering results for both streaming and non-streaming data. In experimental studies,
the proposed method demonstrates promising results with reduced time and space complexity.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The streaming data model refers to the scenario where a large
volume of data arrives continuously and it is either unnecessary
or impractical to store the entire data set in memory (O’Callaghan
et al., 2002). Due to the following inherent restrictions of the
streaming data model, significant new challenges have to be prop-
erly handled by algorithm designers (Henzinger et al., 1998).

(1) Data points can only be accessed in the order according to
which they arrive;

(2) Memory is assumed to be limited compared to the size of
input and random access to the data is not allowed due to
intolerable time and space costs.

Streaming data mining is developed in order to extract the
unknown and hidden knowledge from streaming data (Babcock
et al., 2002; Dong et al., 2003). Among various data mining tech-
niques, clustering is one of the most important. It can help analyze
and uncover the underlying character of the data. Existing streaming
data clustering algorithms are mainly based on partitioning meth-
ods, such as K-means, K-median, etc. For example, CLUSTREAM is
ll rights reserved.
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one of the classical algorithms for streaming data clustering (Aggar-
wal et al., 2003). For non-streaming data, clustering algorithms can
update each data point toward the most appropriate cluster within
each iteration, but for streaming data, after the local clustering in the
current iteration, the original data points cannot be accessed in fol-
lowing iterations. Consequently it’s difficult for these data points to
be updated effectively.

Hierarchical clustering analysis is a widely used clustering tech-
nique, which can be further divided into two categories: agglomer-
ative methods, which proceed by making a series of merges of the
n objects into more general groups, and divisive methods, which
separate n objects successively into finer groups. In practice, hier-
archical agglomerative clustering (HAC) is more commonly used
and the number of clusters can be manually specified (Han and
Kamber, 2006). For HAC, the popular criteria include the sum of
within-group sums of squares (Ward, 1963) and the shortest dis-
tance between groups, which underlies the single-link method.

HAC algorithms, such as CURE and ROCK, use a static model to
determine the most similar clusters to be merged in each level
(Karypis et al., 1999). For merge-based hierarchical clustering,
the limitation is that once a data point is assigned to a certain clus-
ter, its membership cannot be modified. Franti and Virmajoki pre-
sented a cluster removal approach (Franti and Virmajoki, 2006),
which does not suffer from this limitation. However, their
approach requires multiple scans of data, which is infeasible for
streaming data. In practice, there are two key issues to be consid-
ered: how to define an effective criterion for cluster merging and
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how to define an efficient clustering framework with low time and
space complexity. In this paper, our work will mainly focus on
these two aspects.

Each cluster can be specified by a number of parameters, such
as center, number of data points, density and variance. Traditional
hierarchical clustering methods often ignore the density and vari-
ance properties of clusters when measuring the distance between
two clusters, which may lead to unsatisfactory results. In fact, den-
sity plays an important role in clustering (Cao et al., 2006; Lu et al.,
2008). OPTICS (Ankerst et al., 1999) is a classical agglomerative
algorithm based on density where two factors (core-distance and
reachability-distance) are used to measure the density of clusters.
In OPTICS, a core needs to be determined for each cluster, which is
difficult for streaming data. Wu and Tommy (2004) used the intra-
cluster distance and inter-cluster distance to calculate the density.
Chen and Tu (2007) also adopted the density-based grid clusters
function to measure the distance between two clusters. In this pa-
per, the concept of density (defined by variance and intra-cluster
density) is also used to assess the clustering results. We show that
some of the important properties such as the variance within clus-
ters and the intra-cluster density can be estimated accurately by
accessing the data points only once. With the help of this favorable
characteristic, a novel hierarchical clustering algorithm for stream-
ing data is presented.

As to cluster merging, previous methods mainly use Euclidean
distance as the criterion. However, if only the center is used to rep-
resent all elements of each cluster, certain useful properties, such
as variance and density, will be lost. This may in turn compromise
the quality of clustering. Therefore, we propose to use density-
based distance measurement instead of the Euclidean distance
for cluster merging, and a new criterion is also designed for this
purpose.

The remainder of this paper is organized as follows. Section 2
describes how to calculate the variance within the cluster, the in-
tra-cluster density and the inter-cluster distance. Section 3 defines
the criterion for cluster merging. The new clustering algorithm is
presented in Section 4. Section 5 provides the experimental results
and some analysis; and this paper is concluded in Section 6.
2. Variance and density of clusters

In HAC, cluster density is an important property. Ideally, data
points in each cluster are expected to be as compact as possible,
indicating a homogenous cluster. At the same time, the distinction
between any two clusters needs to be as prominent as possible. For
non-streaming data clustering, variance is often used as a measure
of the density within each cluster. Fortunately, for streaming data
clustering, variances within clusters can be calculated accurately
according to Theorem 1 (Equitz, 1989).

Theorem 1. Let Gx and Gy be two clusters, and let xx; S
2
x ;nx be the

mean, variance, and number of points of Gx, while xy; S
2
y ;ny are those

of Gy. The mean of the new cluster by merging these two data sets is:
�x ¼ xx � nx þ xy � ny

nx þ ny

The variance of the new cluster is:

S2 ¼ nx � 1
nx þ ny � 1

S2
x þ

ny � 1
nx þ ny � 1

S2
y þ

nxnykxx � xyk2

ðnx þ ny � 1Þðnx þ nyÞ

where kxx � xyk2 ¼ ðxx � xyÞTðxx � xyÞ
Theorem 1 states that, given the variance and mean of each clus-
ter, the variance and mean of the new cluster merged from the two
clusters can be accurately calculated. This fact ensures that the den-
sity property is always available even if the data points can only be
accessed once. During the iterative clustering procedure, the vari-
ance is updated successively to ensure that its value is up to date.

The distance measure within and between clusters is critical for
hierarchical clustering. Traditional streaming data clustering tech-
niques such as AGNES (Agglomerative Nesting) (Kaufman and
Rousseeuw, 1990) use the center of each cluster as its representa-
tion and the Euclidean distance as the distance metric, which usu-
ally cannot achieve satisfactory results.

There are many ways to measure the distance between two
clusters. The average distance between two clusters, Ci and Cj,
can be defined as: davgðCi;CjÞ ¼ 1

ninj

P
p2Ci

P
p02Cj
kp� p0k, where ni:

the size of cluster Ci;nj: the size of cluster Cj;p: data point in Ci;p0:
data point in Cj;kp � p0k: the distance between p and p0. Let Intra(x)
denote the intra-cluster density and Inter(x1,x2) denote the inter-
cluster distance. According to Theorem 2, their values can be calcu-
lated accurately from the statistical information from the previous
iteration. The detailed proof is presented in the Appendix.

Theorem 2. Let Gx and Gy be two clusters, and let xx;
Pn1

i¼1x2
i ;nx be

the mean, the sum of squares, the number of data points in Gx, while
xy;
Pn2

j¼1y2
j ;ny are those of Gy. The inter-cluster distance can be

expressed as follows:

InterðGx;GyÞ ¼
Xnx

i¼1

Xny

j¼1

kxi � yjk
2 ¼ ny

Xnx

i¼1

x2
i � 2nxnyxxxy þ nx

Xny

j¼1

y2
j :

According to the above theorem, the average inter-cluster distance can
be expressed as:

1
nxny

Xnx

i¼1

Xny

j¼1

kxi � yjk
2 ¼ 1

nxny
ny

Xnx

i¼1

x2
i � 2nxnyxxxy þ nx

Xny

j¼1

y2
j

 !
:

In the above equation, the mean of the cluster can be obtained
according to Theorem 1. The number of data points is known in ad-
vance, and the sum of squares of data points can be obtained from
the previous iteration. Initially, there is only one data point within a
cluster and the sum of squares of data points

P
x2 is just the square

of the data point itself.
The intra-cluster density is defined as the squared sum of dis-

tances between each pair of points in the cluster. So, the intra-cluster
density of Gx can be calculated as:IntraðGxÞ ¼

Pnx
i¼1

Pnx
j¼iþ1kxi � xjk2

and the intra-cluster density of Gy can be calculated as:
IntraðGyÞ ¼

Pny

i¼1

Pny

j¼iþ1kyi � yjk
2. Given cluster G as the new cluster

after merging, its intra-cluster density is defined by:

IntraðGÞ¼
Xnx

i¼1

Xnx

j¼iþ1

kxi�xjk2þ
Xnx

i¼1

Xny

j¼1

kxi�yjk
2þ
Xny

i¼1

Xny

j¼iþ1

kyi�yjk
2

Based on the above formula, the intra-cluster density of the new
cluster G can be updated as:

IntraðGÞ ¼ IntraðGxÞ þ IntraðGyÞ þ InterðGx;GyÞ:
3. The proposed method

3.1. Algorithm framework

The proposed algorithm is illustrated as follows:

Set the values for min, max and target.



Table 1
The properties of each data set and the corresponding parameters setting.

Datasets Size Target Min Max Clustering
methods

Iris 150 3 10 20 stream and
non-stream

Wine 178 3 10 20 stream and
non-stream

Breast Cancer
Wisconsin
(Diagnostic)

569 2 7 14 stream and
non-stream

Abalone 4,177 29 90 180 stream and
non-stream

Covtype 581,012 7 25 50 stream only
KDD-CUP99 4,800,000 5 15 30 stream only

Q. Tu et al. / Pattern Recognition Letters 33 (2012) 641–645 643
Repeat until no more new data points
Repeat until the number of clusters is equal to max

Read a new data point into the window as a new cluster.
End Repeat
Conduct clustering (merging) until the number of clusters
in the window is reduced to min./⁄ Local clustering ⁄/

End Repeat
Conduct clustering (merging) until the number of clusters in

the window is reduced to target.

In the above algorithm, the parameters include target (the final
number of cluster), min (the minimum size of sliding window) and
max (the maximum size of sliding window). Large max and min
values can improve the clustering accuracy but the time cost in-
creases accordingly. Smaller values, on the other hand, can reduce
the time cost, but at the expense of clustering accuracy.

The variables to be updated in each round of iteration include:
the number of data points in each cluster, cluster centers, the var-
iance of each cluster, the sum of squares of data points (used for
updating the Inter(Gx,Gy)), and intra-cluster density.

3.2. Merging criterion

To overcome the drawbacks of existing criteria for cluster merg-
ing, a new heuristic criterion defined as 1

n IntraðGÞ � VarianceðGÞ is
proposed, which considers the impact of density and shape simul-
taneously and is similar to Wu’s method (Wu et al., 2004).
Although 1

nxny
InterðGx;GyÞ can be directly used to determine

whether to merge two clusters or not, it is preferable to calculate
the value of 1

n IntraðGÞ where n = nx + ny for each possible new clus-
ter in the next round of iteration and choose the case with the
smallest value as the optimal merging. As 1

n IntraðGÞ indicates the
property of the new cluster by merging a pair of clusters, while

1
nxny

InterðGx;GyÞ focuses on two separate clusters, it is expected that
1
n IntraðGÞ can perform better in most cases, as demonstrated by the
experimental results in Tables 2–7.

The reason that Variance(G), which represents a different way to
measure the cluster density, is also incorporated into the proposed
criterion is to make it better adapted to different cluster shapes
(e.g., bar, ellipse). Although there is no proof of the optimality of
our criterion, as will be shown in the experiments, this criterion
works well in practice.

The streaming clustering algorithm presented in the paper is
based on agglomerative methods with some new features. In our
algorithm, a sliding window is used. There are three parameters
min, max and target to be specified in advance (max > min > target).
The value of target gives the number of clusters in the final step.
The values of min and max are, respectively, the minimum number
and maximum number of clusters in the process of clustering. Dur-
ing clustering, the number of clusters is kept between min and max.
Merging of clusters will not stop until the number of clusters
reaches min, while data accessing will not stop until the number
of clusters reaches max. After all data points have been accessed,
merging will continue until the number of clusters is equal to
target.

3.3. Space complexity

Five variables are required to describe each cluster: the middle
point Mid(G), the number of data points Count(G), the variance, the
sum of squares of data points, and the Intra-cluster distance
Intra(G). The size of data depends on the operating system; we
illustrate it here using the case of WinXP in following analysis.
Typically, Count(G) is stored as an integer, which usually requires
4 bytes. The variance, the sum of squares, and Intra-cluster
distance are all stored in double precision, which requires a total
of 24 bytes. The size of Mid(G) is dependent on the dimension of
data and we assume that it occupies m bytes. Given the maximum
number of clusters in the sliding window (max), the total space
cost is: (4 + 24 + m) �max bytes = (m + 28) �max bytes. Since m
and max are constants, the space complexity is O(1), which is sig-
nificantly lower than that of other algorithms.

3.4. Time complexity

Compared with alternative existing algorithms, the time com-
plexity of the proposed algorithm is also lower. For example, the
time complexity of ROCK (Robust Clustering using links) is:
O(n2 + nmmma + n2log n) (Han and Kamber, 2006). The time com-
plexity of DBSCAN (Density-Based Spatial Clustering of Application
with Noise) is O(n2) (Han and Kamber, 2006). In our algorithm,
each time the amount of data to be read is max–min. If the size
of the data set is n, there will be approximately n

max — min times of
data reading and n

max�min times of local clustering. After each round
of reading and local clustering, the number of clusters is reduced
from max to min due to merging. In each round of clustering,
max–min times of the merging happen. In order to carry out
cluster-merging, we should find the minimum distance between
clusters, the time complexity for this purpose is O(max2), the time
complexity of each local clustering is O(max2(max–min)). The total
time complexity is O max2ðmax�minÞ n

max�min

� �
¼ Oðmax2nÞ. If the

max is constant, the total time complexity is O(n). If the max is
pertinent to n, the total time complexity is O(max2n).

4. Results and analysis

To evaluate the proposed algorithms, a series of experiments was
conducted with six benchmark data sets. Four data sets were used in
both stream and non-stream clustering. The remaining two data
sets were only used in stream clustering due to their size (the run-
ning time of non-stream methods was intolerable). The properties
of each data set and the corresponding parameter setting are shown
in Table 1. The mean of variances, the overall mean of intra cluster
distances, time cost (ms) were used to evaluate the performance
of algorithms. If the cluster number is n, the mean of the variances

is defined as
Pn

i¼1
VarianceðGiÞ

n , and the overall mean of intra cluster

distances is defined as
Pn

i¼1
IntraðGiÞPn

i¼1
C2

CountðGi Þ
, where the denominator repre-

sents the sum of all pairwise connections over every cluster. For
comparison, another criterion related to density,

E disðnx � xx;ny � xyÞ ¼ ðnx � xx � ny � xyÞTðnx � xx � ny � xyÞ, was
also adopted in which nx � xx is the weighted average of points in
Gx and ny � xy is the weighted average of points in Gy (i.e., the Euclid-
ean distance between the centers of two clusters). Other criteria
used were 1

n IntraðGÞ � VarianceðGÞ; 1
nxny

InterðGx;GyÞ and 1
n IntraðGÞ.



Table 4
The results on the Breast Cancer Wisconsin data set.

Criteria (Clustering type) Mean of
variance

Overall mean of
intra cluster
distances

Time
cost
(ms)

1
n IntraðGÞ � VarianceðGÞ (stream) 273338 2.82⁄105 399

(non-
stream)

225339 2.46⁄105 473984

E disðnx � xx;ny � xyÞ (stream) 448981 9.12⁄105 275
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4.1. Results

HAC is used as the non-stream method and the algorithm
framework in section 3.1 is used as the stream method. Table 1 de-
scribes the properties of the datasets, the parameters setting of the
algorithm and the clustering methods used. Note that only the 34
continuous variables of KDD-CUP99 were used. The experimental
results are presented in Tables 2–7.
(non-
stream)

411989 8.86⁄105 346407

1
nx
�ny

InterðGx;GyÞ (stream) 476059 6.67⁄105 326
(non-
stream)

355912 5.58⁄105 144664

1
n IntraðGÞ (stream) 482211 5.21⁄105 335

(non-
stream)

235097 4.33⁄105 145157

Table 5
The results on the Abalone data set.

Criteria (Clustering type) Mean of
variance

Overall mean of
intra cluster
distances

Time cost
(ms)

1
n IntraðGÞ � VarianceðGÞ (stream) 0.015 0.016851525 201958

(non-
stream)

0.013 0.012937738 58269441

E disðnx � xx;ny � xyÞ (stream) 0.1 0.045209064 136095
(non-
stream)

0.03 0.040713647 42009570

1
nx
�ny

InterðGx;GyÞ (stream) 0.011 0.037290074 160289
(non-
stream)

0.011 0.029379745 18770044

1 IntraðGÞ (stream) 0.012 0.01885799 162454
4.2. Analysis

From the above results, it is clear that the results of non-stream
clustering using 1

n IntraðGÞ � VarianceðGÞ as the criteria are better
than those using E disðnx � xx;ny � xyÞ; 1

nxny
InterðGx;GyÞ and 1

n Intra
ðGÞ as the criteria. In particular, as shown in Table 7, the clustering
results with 1

nxny
InterðGx;GyÞ and 1

n IntraðGÞ as the criteria are so infe-
rior that they are out of the range of double type.

In the meantime, the running time of stream clustering is signif-
icantly less than that of the non-stream clustering. Comparing run-
ning times using the four different criteria, although the running
time of 1

n IntraðGÞ � VarianceðGÞ is generally longer than that of other
criteria, the clustering results are much better than others. In sum-
mary, the proposed algorithm framework is effective in handling
both stream and non-stream data and can be applied with various
criteria. Also, given the same criterion, the difference between the
results of stream and non-stream methods is not significant.

As to related work, a recent study also used inter and intra clus-
ter variance (Karkkainen et al., 2007), which bears some similarity
with our method. However, the accuracy of clustering in each
iteration cannot be guaranteed, while our method is always
Table 3
The results on the Wine data set.

Criteria (Clustering type) Mean of
variance

Overall mean of
intra cluster
distances

Time
cost
(ms)

1
n IntraðGÞ � VarianceðGÞ (stream) 15630 32082.63 172

(non-
stream)

15254 33726.2 9344

E disðnx � xx;ny � xyÞ (stream) 96681 199876 115
(non-
stream)

70681 190292.3 5555

1
nx
�ny

InterðGx;GyÞ (stream) 16254 33726.2 123
(non-
stream)

15499 48590.86 2387

1
n IntraðGÞ (stream) 15702 33179.36 134

(non-
stream)

15254 33726.2 2426

n
(non-
stream)

0.011 0.011774436 19572218

Table 2
The results on the Iris data set.

Criteria (Clustering type) Mean of
variance

Overall mean of
intra cluster
distances

Time cost
(ms)

1
n IntraðGÞ � VarianceðGÞ (stream) 0.53 1.08 70

(non-
stream)

0.53 1.08 1562

E disðnx � xx;ny � xyÞ (stream) 1.64 3.37 35
(non-
stream)

1.24 2.66 1118

1
nx
�ny

InterðGx;GyÞ (stream) 0.56 1.62 48
(non-
stream)

0.53 1.09 685

1
n IntraðGÞ (stream) 0.55 1.45 50

(non-
stream)

0.54 1.10 563

Table 6
The results on the Covtype data set.

Criteria (Clustering type) Mean of
variance

Overall mean of
intra cluster
distances

Time cost
(ms)

1
n IntraðGÞ � VarianceðGÞ (stream) 1.26⁄106 2.41⁄106 10831813

E disðnx � xx;ny � xyÞ (stream) 2.7⁄106 2.76⁄107 7967694
1

nx
�ny

InterðGx;GyÞ (stream) 7.4⁄106 4.93⁄107 8285309

1
n IntraðGÞ (stream) 2.4⁄106 1.42⁄107 8279659

Table 7
The results on the KDD-CUP99 data set.

Criteria (Clustering type) Mean of
variance

Overall mean of
intra cluster
distances

Time cost
(ms)

1
n IntraðGÞ � VarianceðGÞ (stream) 5.2⁄1015 1.37⁄1011 25281462

E disðnx � xx;ny � xyÞ (stream) 5.8⁄1016 1.87⁄1012 18601356
1

nx
�ny

InterðGx;GyÞ (stream) – – –

1
n IntraðGÞ (stream) – – –
accurate. Furthermore, the size of the buffer is between 2000 and
4000 in Karkkainen’s method (Karkkainen and Franti, 2007), while
the size of the buffer is less than 100 in our method. Compared
with Zhong’s method, generally speaking, their criteria are better
than ours. When two clusters are merged, two indexes: Inter-con-
nectivity (IC) and Inter-similarity (IS) are used to rank the sub-
group, which consider the distance, density and similarity
comprehensively (Zhong et al., 2011). However, their method is
based on multiple scans, which is not suitable for streaming data.
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In order to calculate the Inter-distance, the boundary point should
be used, but for streaming data, the detailed information of data
points will be lost in the next iteration. By contrast, in our method,
a few statistical parameters are employed to calculate the criteria
for merging instead of using boundary points. The density and sim-
ilarity properties are also taken into account. Although our criteria
may be less accurate due to the use of statistical parameters in-
stead of the original data, our method is more appropriate for
streaming data.

5. Conclusion

In this paper, we present a density-based hierarchical method
with sliding windows for effective streaming data clustering. In
the proposed method, some important properties of the current
clusters are preserved to calculate the density in each round of
iteration, resulting in improved accuracy of clustering. In the
meantime, the variance and intra-cluster density of clusters are
both taken into account in the design of a new criterion for clus-
ter merging. Experimental results suggest that the proposed
method can noticeably improve the accuracy of clustering com-
pared with traditional techniques based on the Euclidean dis-
tance and other criteria. As to further work, it is also possible
to further improve the efficiency of our algorithm based on fast
PNN algorithm (Franti et al., 2000).
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Appendix A

Theorem 2. Let Gx and Gy be two data sets, and let xx;
Pn1

i¼1x2
i ;nx be

the mean, the sum of squares, the number of data points in Gx

respectively, while xy;
Pn2

j¼1y2
j ;ny are, similarly, those of Gy. The inter-

cluster distance can be expressed as follows:

InterðGx;GyÞ ¼
Xnx

i¼1

Xny

j¼1

kxi � yjk
2 ¼ ny

Xnx

i¼1

x2
i � 2nxnyxxxy þ nx

Xny

j¼1

y2
j :
Proof.

Xnx

i¼1

Xny

j¼1

kxi � yjk
2 ¼

Xnx

i¼1

Xny

j¼1

x2
i � 2xiyj þ y2

j

� �

¼
Xnx

i¼1

Xny

j¼1

x2
i � 2

Xnx

i¼1

Xny

j¼1

xiyj þ
Xnx

i¼1

Xny

j¼1

y2
j

¼ ny

Xnx

i¼1

x2
i � 2

Xnx

i¼1

xi

Xny

j¼1

yj þ nx

Xny

j¼1

y2
j

¼ ny

Xnx

i¼1

x2
i � 2nxnyxxxy þ nx

Xny

j¼1

y2
j �
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