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Abstract— This paper proposes a robust fault detection and
isolation (FDI) approach that combines active and passive
robust FDI approaches. Standard active FDI approaches obtain
robustness by using the unknown input observer (UIO) to
decouple unknown inputs from residuals. Differently, standard
passive FDI approaches achieve robustness by using the set
theory to bound the effect of uncertain factors (disturbances
and noises). In this paper, we combine the UIO-based and the
set-based approaches to produce a mixed robust FDI, which
can mitigate the disadvantages and exert the advantages of
the two robust FDI approaches. In order to emphasize the
role of set theory, the UIO design based on the set theory is
named as the set-theoretic UIO (SUIO). A quadrotor subsystem
is used to illustrate the effectiveness of the proposed FDI
approach.

Note to Practitioners—The proposed SUIO-based approach
achieves robustness in FD against disturbances, noises, and
modeling uncertainties (e.g., linearization errors) either by decou-
pling or by bounding their effect on the residuals. Moreover, this
approach allows FI by generating a set of structured residuals
decoupling the effect of faults. The authors think that this method
can be used for processes that operate around equilibrium
points. In this case, we can linearize the nonlinear systems into
linear systems with bounded unknown inputs and then apply the
proposed method. Moreover, an important feature of this method
is that it can overcome the design condition of the standard
UIO approach, which means that it could be applied to a larger
number of applications.

Index Terms— Active and passive decoupling, robust fault
detection and isolation (FDI), set theory, unknown input
observer (UIO).
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I. INTRODUCTION

AS THE complexity of technical systems increases, diag-
nosis of faults occurred in the systems (e.g., aircrafts,

manipulators, etc.) has been attracting more and more attention
in order to improve dependability and reliability [1], [2].
However, since real systems are affected by uncertain fac-
tors (disturbances, noises, modeling errors, etc.), an effective
fault detection and isolation (FDI) approach must be able to
deal with them. An FDI method is called robust if it can
separate the effects of faults and uncertain factors on the
residuals from each other.

Robust FDI is classified into passive and active methods [1],
[3]–[6]. In the active robust FDI approaches, a well-known
technique is based on the unknown input observer (UIO) [3],
[7]–[9]. Since the UIO can be designed to be insensitive to
unknown inputs, it can be used to generate residual signals
that are only sensitive to faults, but insensitive to the unknown
inputs (uncertain factors). In this way, FDI robustness with
respect to the unknown inputs can be achieved. However,
a complete decoupling of all unknown inputs must satisfy the
design condition of UIO [3], [10], which can only be ensured
by a limited number of practical systems. Thus, in order
to overcome this restriction, different methods were further
proposed based on different assumptions on the knowledge of
unknown inputs (see [11]–[13]).

In the passive robust FDI methods (mainly the set-based
approaches), the effects of uncertain factors are propagated to
the residuals by considering theirs bounds. There exist three
types of set-based approaches, which use set invariance theory
[14]–[16], interval observers [17], [18], and set-membership
estimation [19]–[21], respectively. By propagating the effects
of uncertain factors into the residuals, they generate fixed
(invariant set-based approaches) or adaptive (interval observer-
based approaches and set-membership estimation approaches)
thresholds for the residuals. The main advantage of the set-
based approaches consists in achieving robust FDI requiring
only the boundedness assumption of uncertain factors. Thus,
if the set-based approaches have detected an inconsistency
between the model and the measurements, it implies that the
system has become faulty. However, FDI decisions of the
set-based approaches are more conservative than the active
robust FDI approaches due to the consideration of the worst
case situation of uncertain factors, being their main weakness.

Considering the advantages and weaknesses of the active
and passive FDI methods, this paper aims to propose a mixed
active/passive robust FDI method in order to mitigate their
disadvantages and exert their advantages with the aim of
obtaining two important benefits as follows.

1) With respect to the set-based passive FDI methods,
the proposed approach can reduce FDI conservatism
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because the effect of some unknown inputs that could
not be bounded can be actively decoupled. This results
in tighter residual bounds and smaller detectable faults;

2) With respect to the UIO-based active FDI methods,
the proposed approach can extend the applicability to
those systems that cannot satisfy the standard UIO
design condition. This is achieved by dividing unknown
inputs into two groups: one group containing unknown
inputs that can be actively decoupled and the other group
whose effect is bounded instead of being decoupled.

Furthermore, assuming that there are p actuators installed
in the system, the proposed approach in this paper uses p
theoretic UIOs (SUIOs) to achieve not only FD but also FI,
designing each UIO to be insensitive to one known input and
several unknown inputs. This paper is based on preliminary
results in [22] and has the following three important features
with respect to the existing FDI schemes.

1) Since each SUIO is designed to be insensitive to faults
in a particular actuator but sensitive to faults in the
remaining p − 1 actuators, this means that using the
proposed FDI scheme, faults in any actuator can be
monitored by p − 1 SUIOs together, which has higher
fault sensitivity than some traditional observer-based
FDI schemes only relying on one observer to monitor
each actuator;

2) When designing an SUIO to be insensitive to one
input generated by an actuator, whether the actuator
is healthy or faulty cannot affect the residual of this
SUIO. Thus, each SUIO can simultaneously match the
healthy system situation and one faulty situation of the
corresponding actuator. It is not needed to design an
extra observer to especially monitor the healthy situ-
ation as in the traditional observer-based FDI schemes.
Compared with some traditional schemes with a bank of
observers (interval observer, set-membership estimator,
etc.), the proposed FDI scheme needs one observer
less (i.e., only p observers);

3) With respect to the UIO-based FI methods, the pro-
posed method establishes guaranteed FI conditions using
invariant sets. For the considered faults, we can check
the guaranteed FI conditions to know whether they are
isolable in advance and offline. This is a feature that the
standard UIO-based approach cannot provide.

The remainder of this paper is organized as follows.
Section II introduces the plant model and UIO. Section III
introduces the method designing SUIOs, based on a mixed
active/passive decoupling method. Section IV illustrates the
effectiveness of the proposed method using a quadrotor sub-
system. This paper is concluded in Section V including
directions for the future work.

II. SYSTEM DESCRIPTION

A. Model of Plant

The linear discrete time-invariant plant under the effect of
actuator faults is modeled as

xk+1 = Axk + b1 f1u1
k + · · · + bp f pu p

k + Eωk (1a)

yk = Cxk + Fηk (1b)

where A ∈ R
n×n , bi ∈ R

n is the i th column of the input
matrix B = [b1, . . . bi , . . . , bp] ∈ R

n×p , E ∈ R
n×r , C ∈

R
q×n , and F ∈ R

q×s are time-invariant matrices, k denotes
the kth discrete-time instant, xk ∈ R

n and yk ∈ R
q are the state

and output vectors, uk = [u1
k, . . . , ui

k, . . . , u p
k ]T ∈ R

p (ui
k is

the i th component of uk associated with the i th actuator) and
ωk ∈ R

r are known and unknown inputs (process disturbances,
modeling errors, etc.), ηk ∈ R

s represents the noise vector, and
fi models the fault magnitude in the i th actuator.

When the i th actuator is healthy, fi takes the value 1, while
if the i th actuator becomes faulty, fi takes a value inside
the interval [0, 1), where 0 means that the i th actuator has
completely lost its function and a value inside (0, 1) means
that the i th actuator has partially lost its performance.

Assumption 1: There is only one actuator that may become
faulty at a time and faults are persistent such that the FDI
module has sufficient time to detect and isolate it. �

Assumption 2: The measurement noise vector ηk is
bounded by a known set V = {η ∈ R

s : |η − ηc| ≤ η̄},
where ηc and η̄ are known and constant vectors. �

When the i th actuator becomes faulty while all the other
actuators are still healthy, the model (1) can be rewritten as

xk+1 = Axk + BiFi uk + bi fi u
i
k + Eωk (2a)

yk = Cxk + Fηk (2b)

where Bi = [b1, . . . , bi−1, 0, bi+1, . . . , bp] ∈ R
n×p and

Fi = diag(1, . . . , 1, 0, 1, . . . , 1) ∈ R
p×p , where 0 is the i th

diagonal element of Fi . Since the actuator faults are treated
as unknown inputs, (2a) can be further rewritten as

xk+1 = Axk + Bi uk + Eiω
i
k (3)

where Bi = BiFi , Ei =
[
bi E

]
and ωi

k =
[

fi ui
k ω

T
k

]T
.

Remark 3: The model (2) or (3) can represent the healthy
system situation as well when fi takes the value 1. �

B. Notion of UIOs

When the plant is in the healthy situation, (2) can be
equivalently rewritten as

xk+1 = Axk + Buk + Eωk (4a)

yk = Cxk + Fηk . (4b)

Based on (4), the UIO matching the healthy situation of the
plant can be designed as

zk+1 = Nzk + T uk + K yk (5a)

x̂k = Mzk + H yk (5b)

ŷk = Cx̂k (5c)

where zk ∈ R
n , x̂k ∈ R

n , and ŷk ∈ R
q are the state vector

of the UIO, the state, and output estimation vectors of the
plant, respectively, and N ∈ R

n×n , T ∈ R
n×p , K ∈ R

n×q ,
M ∈ R

n×n , and H ∈ R
n×q are parametric matrices.

With (4) and (5), the corresponding state estimation error
vector is defined as

ek = xk − x̂k (6)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 3

with the dynamics described by

ek+1 = (A − H C A− M K1C)ek

+ [(A− H C A− M K1C)M − M N]zk

+ [(A− H C A− M K1C)H − M K2]yk

+ (B − MT − H C B)uk + (E − H C E)wk

− H Fηk+1 − M K1 Fηk (7)

where K = K1 + K2. From (7), the parametric matrices of
the UIO can be obtained by solving

E − H C E = 0 (8a)

B − MT − H C B = 0 (8b)

(A − H C A− M K1C)M − M N = 0 (8c)

(A − H C A− M K1C)H − M K2 = 0. (8d)

Then, under (8), the dynamics of ek can be reduced into

ek+1 = (A − H C A− M K1C)ek − H Fηk+1 − M K1 Fηk .

(9)

Note that the satisfaction of (8) implies that the UIO is not
sensitive to ωk . However, it can also be observed in (9) that the
UIO is still sensitive to the measurement noises, because the
satisfaction of (8) does not imply the satisfaction of H F = 0
and M K1 F = 0. This is a known issue in the available UIO
literature. In this paper, instead of actively decoupling the
noises, they will be bounded using the set theory. By analyzing
(7) and (8), the conditions to ensure the existence of the UIO
(5) [i.e., the satisfaction of (8)] are given in Theorem 4.

Theorem 4 (see [3]): Necessary and sufficient existence
conditions of the UIO (5) for the system (2) are:
1) rank(C E) = rank(E) and 2) (C , A1) is a detectable pair,
where A1 = A − E[(C E)T C E]−1(C E)T C A. �

III. ROBUST FAULT DETECTION AND ISOLATION

A. Design of SUIOs

According to Theorem 4, if a system cannot satisfy the
existence condition of UIOs, it is impossible to design con-
ventional UIOs (as in [3]) to decouple all unknown inputs
and implement robust FDI, which restricts the applicability
of the UIO-based method. In order to avoid this limitation,
we propose to divide the unknown input vector ωi

k into two
groups: ωi,1

k and ωi,2
k , where ωi,1

k represents a vector composed
of unknown inputs that can be actively decoupled by a UIO,
while ωi,2

k includes those that cannot be actively decoupled.
Remark 5: Since the actuator faults are treated as unknown

inputs in this paper, for faults in the i th actuator, the partition-
ing of ωi

k into ωi,1
k and ωi,2

k must be done to guarantee that
ωi,1

k includes fi ui
k as one of its components and there exist

UIOs that can actively decouple ωi,1
k . �

Considering that the dimension of ωi,1
k is ni

a , where ni
a

denotes the number of unknown inputs that can be actively
decoupled by a UIO, ni

p = r+1−ni
a represents the dimension

of ωi,2
k , which is the number of the remaining unknown inputs

that the UIO cannot be insensitive to. Furthermore, the matrix
Ei corresponding to ωi

k can be divided into Ei = [E1
i E2

i ],

where E1
i ∈ R

n×ni
a and E2

i ∈ R
n×ni

p . Since ni
a denotes the

number of unknown inputs that a UIO can be designed to
be insensitive to, we can design a UIO able to decouple ωi,1

k
instead of ωi

k , which means that the conditions in Theorem 4
can be overcome due to the partial decoupling unknown inputs.

The UIO for the i th actuator can be denoted as

zi
k+1 = Ni zi

k + T i uk + K i yk (10a)

x̂ i
k = Mi zi

k + H i yk (10b)

ŷi
k = Cx̂i

k (10c)

where zi
k , x̂ i

k , and ŷi
k have similar definitions as in (5), and Ni ,

T i , K i , Mi , and H i denote the corresponding UIO parametric
matrices. The UIO (10) is designed to be insensitive to the
unknown input vector ωi,1

k , but sensitive to ωi,2
k .

By considering (3) and (7), we can obtain that the state
estimation error of the i th UIO (10) as

ei
k+1 =

(
A − H iC A − Mi K i

1C
)
ei

k

+ [(
A − H iC A − Mi K i

1C
)
Mi − Mi Ni ]zk

+ [(
A − H iC A − Mi K i

1C
)
H − Mi K i

2

]
yk

+ (Bi − Mi T i − H iCBi
)
uk

+ (E1
i − H iCE1

i

)
ωi,1

k

+ (E2
i − H iCE2

i

)
ωi,2

k − H i Fηk+1

−Mi K i
1 Fηk (11)

with K i = K i
1 + K i

2. Similar to (8), the parametric matrices
for the i th UIO can be obtained by solving

E1
i − H iCE1

i = 0 (12a)

Bi − Mi T i − H iCBi = 0 (12b)
(

A − H iC A − Mi K i
1C

)
Mi − Mi Ni = 0 (12c)

(
A − H iC A − Mi K i

1C
)
H i − Mi K i

2 = 0. (12d)

Remark 6: The i th UIO (10) is not affected by faults in the
i th actuator. Even if the i th actuator has become faulty, the
state estimation error will not be affected. Moreover, as pointed
in Remark 3, the i th UIO corresponds to not only the i th
actuator-fault situation but also to the healthy situation. �

It is known that the UIO (10) can only decouple the effect
of ωi,1

k from the residual signals, but cannot distinguish the
effect of ωi,2

k from the faults on the residuals. This implies
that if we only use the UIO (10), it is impossible to achieve
FDI robustness with respect to ωi,2

k . In order to implement
robust FDI, we further propose to use the set-theoretic meth-
ods to passively consider the effect of ωi,2

k on the residual
signals.

Assumption 7: The vector ωi,2
k is bounded by a known set

W i,2 = {ωi,2
k ∈ R

ni
p : |ωi,2 − ωi,2,c| ≤ ω̄i,2}, where ωi,2,c and

ω̄i,2 are known and constant vectors. �
Based on (11) and (12), the dynamics of the state estimation

error vector of the UIO (10) can be reduced into

ei
k+1 = (A − H iC A − Mi K i

1C)ei
k + (E2

i − H iCE2
i )ω

i,2
k

−H i Fηk+1 − Mi K i
1 Fηk . (13)
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In the proposed FD method, the residual vector correspond-
ing to the i th UIO can be defined as

r i
k = yk − ŷi

k = Cei
k + Fηk . (14)

Since ωi,2
k , ηk , and ηk+1 are bounded by W i,2 and V , a set-

based version of (13) can be obtained as

Ei
k+1 = (A − H iC A − Mi K i

1C)Ei
k ⊕ (E2

i − H iCE2
i )W

i,2

⊕(−H i FV )⊕ (−Mi K i
1 FV ), (15)

where ⊕ denotes the Minkowski sum and Ei
k is the set of ei

k
and e0

k ∈ Ei
0 is given. With (15), a robust state estimation set

X̂ i
k corresponding to the i th SUIO can be obtained as X̂ i

k ={x̂ i
k} ⊕ Ei

k . Note that, according to [23], as k tends to ∞,
(15) converges to robust positively invariant (RPI) sets of (13).
Thus, with the notion of RPI sets, we can construct an RPI set
for ei

k based on (13), which is denoted as Ei corresponding
to the i th SUIO. For the notion and computation of RPI sets,
the readers are referred to [23] and [24].

Since when the system operates at steady state, ei
k is always

inside the RPI set Ei , a steady-state set for r i
k can be further

constructed using (14) as

Ri = C Ei ⊕ FV . (16)

B. Fault Detection

Definition 8 (SUIO): In the case that the system (1) cannot
satisfy the existence conditions in Theorem 4, a UIO (10)
able to decouple part of the unknown inputs of the system (1),
handle the remaining unknown inputs using the set theory, and
generate robust state estimation sets is named in this paper as
the SUIO of the system (1), which is mathematically described
by (10) and (13)–(16).

In the proposed FDI method, a bank of SUIOs are designed,
each corresponding to not only faults in one actuator but also
to the healthy situation. Particularly, faults in the i th actuator
is treated as an unknown input and the i th SUIO is designed to
be insensitive to the faults in the i th actuator. Thus, p SUIOs
should be designed to monitor the faulty situations related
to the p actuators, respectively. During the system operation,
actuator faults can be detected and isolated by combining the
system-operating information from all the p SUIOs. Since
there are p SUIOs, we should construct p RPI sets, each
describing the status of an actuator. Moreover, we can obtain
p residuals, each corresponding to one actuator as well.

Because fi ui
k is considered as an unknown input decoupled

by the i th SUIO and the case that fi takes the value 1
corresponds to the healthy situation, all the SUIOs can also
match the healthy actuator situation in addition to the faulty
situations. Thus, when the system is at steady state of the
healthy operation, we can have

r i
k ∈ Ri for all i ∈ I = 1, 2, . . . , p (17)

which means that if a violation of any inclusion out of the p
inclusions in (17) is detected, it can be guaranteed that the
system has become faulty. Otherwise, it is assumed that the
system is still healthy. Since all the SUIOs are used for FD in
the proposed scheme, theoretically, its FDI sensitivity is higher

when compared with some traditional observer-based schemes
that only use the residual signal generated by the observer
matching the current system situation for robust FDI.

C. Fault Isolation

In the previous section, when the system is healthy,
the residual signals generated by all the SUIOs should be
inside their corresponding RPI sets at steady state, respectively.
Once a residual vector leaves its RPI set, it implies that the
system has become faulty. However, since in the proposed
method, each SUIO is designed to be insensitive to faults in
one actuator, under the single-fault assumption, this means that
the actuator corresponding to this residual signal leaving its
RPI set must not become faulty. Thus, for making FI decisions,
we should directly exclude this actuator.

With the logic explained above, we can remove all the
excluded actuators from the set of candidate faulty actuators.
Then, it can be guaranteed that the remaining actuators include
the real faulty actuator, which is the first step of the proposed
FI strategy. Afterwards, the set of actuators is divided into
two groups (i.e., the healthy and fault-candidate actuators).
The goal of the proposed FI method is to isolate the faulty
actuator among the group of fault-candidate actuators.

When the system is healthy, for the i th SUIO, the state
estimation error of this SUIO has been derived as (13).
Moreover, without faults, for any SUIO out of the p SUIOs, its
state estimation error is always subject to the same dynamics
as in (13). If the i th actuator becomes faulty, from the healthy
situation to the i th faulty situation, the state estimation error
corresponding to the i th SUIO will not be affected.

However, if the j th actuator ( j �= i ) becomes faulty,
the state estimation error of the i th SUIO will change. The
state equation of the plant under the j th actuator fault is

xk+1 = Axk + B j uk + E jω
j
k (18)

where B j = B jF j , E j = [b j E] and ω j
k = [ f j u

j
k ωk ]T .

Furthermore, we can equivalently transform (18) into

xk+1 = Axk + B j uk + E jω
j
k

= Axk + Bi uk + Eiω
i
k + δ j,i

k (19)

with δ j,i
k = (b j f j − b j )u

j
k − (bi fi − bi )ui

k .
With (13) and (19), when the j th actuator becomes faulty

instead of the i th actuator, the dynamics of the state estimation
error of the i th SUIO can be derived as

e j,i
k+1 =

(
A − H iC A − Mi K i

1C
)
e j,i

k

+ (E2
i − H iCE2

i

)
ωi,2

k − Mi K i
1 Fηk − H i Fηk+1

+ (I − H iC)δ j,i
k . (20)

Thus, for the i th SUIO, if we consider all the possible
actuator faults except for the i th one, the following dynamics
can be obtained to describe the state estimation error under
the different faulty situations:

ζ i
k+1 = Giζ i

k + Qi uk + Siνi (21)
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where

Pi = I − H iC, Āi = A − H iC A − Mi K i
1C

Jl = bl fl − bl

ζ i
k =

[(
e1,i

k

)T (
e2,i

k

)T
. . .

(
ei−1,i

k

)T (
ei+1,i

k

)T
. . .

(
e p,i

k

)T ]T

Gi =

⎡

⎢
⎢
⎢
⎣

Āi 0 0 · · · 0
0 Āi 0 · · · 0
...

...
... · · · ...

0 0 0 · · · Āi

⎤

⎥
⎥
⎥
⎦

Si =

⎡

⎢
⎢
⎢
⎣

(E2
i − H iCE2

i

) −Mi K i
1 F −H i F(E2

i − H iCE2
i

) −Mi K i
1 F −H i F

...
...

...(E2
i − H iCE2

i

) −Mi K i
1 F −H i F

⎤

⎥
⎥
⎥
⎦

Qi =

⎡

⎢
⎢
⎢
⎣

Pi J1 0 0 · · · 0 − Pi Ji 0 · · · 0
0 Pi J2 0 · · · 0 − Pi Ji 0 · · · 0
...

...
... · · · ... ...

... · · · ...

0 0 0 · · · 0 − Pi Ji 0 · · · Pi Jp

⎤

⎥
⎥
⎥
⎦

νi = [(
ωi,2

k

)T
(ηk)

T (ηk+1)
T ]

Since νi is bounded, for given fault magnitudes f1, f2, . . .,
f p , by designing uk , an RPI set Ē i for ζ i

k can be constructed.
Thus, if we can guarantee that

R̄i ∩ Ri = Ø (22)

where R̄i is an union of p − 1 sets of the residual vectors

of the i th SUIO, each set corresponding to a faulty situation
in an actuator different from the i th one. This implies that,
for any considered fault except for the one in the i th actuator,
as long as it occurs, the residual vector of the i th SUIO will
leave its set Ri and we can compute R̄i as

R̄i = R̄1,i∪, . . . ,∪R̄i−1,i ∪ R̄i+1,i∪, . . . ,∪R̄ p,i (23)

where R̄ j,i represents the set of the residual vector of the i th

SUIO in the j th actuator-fault mode with

R̄ j,i = C Ē j,i ⊕ FV (24)

where Ē j,i is the RPI set of the state estimation error of the

i th SUIO in the j th actuator-fault mode.
Remark 9: The considered fault magnitudes f1, f2, . . ., f p

are those critical to system performance/safety, which can be
scalars or intervals (e.g., fi = 0.5 or fi = [0.1, 0.5]). �

In order to satisfy (22), after FD, we need to design a proper
control input vector for FI. In this paper, we design the control
input for FI as a constant vector denoted as uconst instead of
a variable vector for simplicity. In this case, the RPI set Ē i

can have a smaller size and the selection of uconst will only
change the center of Ē i not its size, which can reduce the
conservatism of the guaranteed FI condition (22).

For each actuator, we have to guarantee that the correspond-
ing condition (22) is satisfied. In this case, the FD and FI tasks
can be guaranteed. A group of guaranteed FI conditions are
summarized in Proposition 10.

Proposition 10: For the considered fault magnitudes f1, f2,
. . ., f p , if there exists a constant input vector uconst such that

R̄i ∩ Ri = Ø for all i = 1, 2, . . . , p (25)

are satisfied, as long as one of the faults is detected, it is
guaranteed that it can be isolated during a time interval by
adjusting the system input into uconst at the FD time instant.

Proof: If (25) is satisfied, after FD and injecting uconst
into the system, one and only one SUIO can generate residual
signal that always stays in their corresponding RPI set, while
the residual signals generated by the other SUIOs will leave
their RPI sets, which guarantees the success of active FI. �

The proposed FI strategy consists in changing the input
vector to uconst at the FD time instant and then testing which
residual vector among the remaining group of SUIOs can
always satisfy the inclusion (17). Finally, the residual vector
can accurately indicate the fault by means of this testing.

Additionally, we should know that uconst needs not only
to satisfy the FI conditions in Proposition 10 but also some
other constraints related to system safety/performance. In this
paper, we use an input set U to generally describe the input
constraints. Moreover, for the i th SUIO, we further define the
set of input vectors that can guarantee the satisfaction of (22)
as Ui , which means that if any input vector belonging to Ui is
injected into the system after FD, allowing to know whether
the i th actuator has become faulty or not by testing (17). Thus,
in order to distinguish faults in all the actuators, an input vector
ensuring Proposition 10 must satisfy

uconst ∈ U =
p⋂

i=1

Ui (26)

where each input set Ui (i �= 0) corresponds to an SUIO.
Although any uconst ∈ U can assure active FI, in order to

reduce damages to the system during active FI as much as
possible, we formulate the problem of selecting an optimal
FI-oriented input vector u∗const as an optimization problem

u∗const = inf{u : uT Qu, u ∈ U } (27)

where Q is a positive semi-definite matrix and u∗const is based
on the minimization of the energy of the designed input vector.
A systematic solution of the optimization problem (27) will be
developed as further research. However, a method designing
an input vector for the problem (27) can be found in [25].

Finally, in order to help the readers understand the proposed
FDI approach, the FDI procedure is formalized in Algorithm 1.

IV. ILLUSTRATIVE EXAMPLE

We use a quadrotor manufactured by Draganfly Innovations
to illustrate the proposed FDI method. The nonlinear model
and its parameters are introduced, defined, and identified
in [26], where the variables ẋ , ẏ, ż, φ, θ , ψ , p, q , r are
chosen as the states of the quadrotor and ω1, ω2, ω3 and
ω4 are defined as the inputs of the quadrotor. Without loss
of generality, we only consider the hovering status of the
quadrotor here. At hovering, we set ẋ = 0, ẏ = 0, ż = 0,
φ = 0, θ = 0, ψ = 0, p = 0, q = 0, r = 0, and U1 = mg (m
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Algorithm 1: FDI Algorithm
1: Initialization (the plant, SUIOs, etc.);
2: At time instant k: r i

k ∈ Ri for all i ∈ I, FD = FALSE;
3: while FD �= TRUE do
4: k← k + 1;
5: Obtain r i

k for all i ∈ I;
6: for each i ∈ I do
7: if r i

k �∈ Ri then
8: FD ← TRUE;
9: Switch uk to uconst to start active FI;

10: break;
11: end if
12: end for
13: end while
14: while FD �= FALSE do
15: Test (17) for FI;
16: Remove i violating r i

k ∈ Ri from I;
17: k ← k + 1;
18: if length(I) = 1 then
19: FD ← FALSE;
20: The unique element in I indicates the fault;
21: break;
22: end if
23: end while
24: return

and g are the mass and the gravity accelerator, respectively)
and ω1 = ω2 = ω3 = ω4 = 181.2171 rad/s. Consequently,
we can linearize the nonlinear model around the hovering point
obtaining a linear model. Furthermore, discretizing this linear
model with a sampling time of T = 0.01 s, we can obtain a
linear time-invariant discrete model. For simplicity, we only
use the subsystem describing the rotation around the body
frame of the quadrotor as the case study and the outputs of
the subsystem are chosen as p, q , and r . The model parameters
in (1) for this subsystem are obtained as

A =
⎡

⎣
0.9985 0 0

0 0.9985 0
0 0 0.9991

⎤

⎦, C =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

F =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

B =
⎡

⎣
0 0.0058 0 −0.0058

−0.0058 0 0.0058 0
−0.0002 0.0002 −0.0002 0.0002

⎤

⎦

E =
⎡

⎣
0.5 0.3 0 1.7
0.4 0 0.6 0
0.3 0.2 0.05 0.06

⎤

⎦.

Since there are four actuators in the quadrotor, we consider
four fault magnitude intervals corresponding to them, respec-
tively, which are given as f1 = [0.1, 0.15], f2 = [0.2, 0.25],
f3 = [0.1, 0.15], and f4 = [0.2, 0.25]. In this example, we use
random fault magnitudes in real time inside the corresponding
intervals given above. According to (3), the four considered

Fig. 1. Verification of the guaranteed FI conditions.

actuator modes are modeled as

B1 =
⎡

⎣
0 0.0058 0 −0.0058
0 0 0.0058 0
0 0.0002 −0.0002 0.0002

⎤

⎦
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Fig. 2. Evaluation of the first component of the residuals of the four
SUIOs (superindex indicates SUIO/the faulty mode).

E1
1 =

⎡

⎣
0 0.5

−0.0058 0.4
−0.0002 0.3

⎤

⎦

B2 =
⎡

⎣
0 0 0 −0.0058

−0.0058 0 0.0058 0
−0.0002 0 −0.0002 0.0002

⎤

⎦

E1
2 =

⎡

⎣
0.0058 0.5

0 0.4
0.0002 0.3

⎤

⎦

B3 =
⎡

⎣
0 0.0058 0 −0.0058

−0.0058 0 0 0
−0.0002 0.0002 0 0.0002

⎤

⎦

E1
3 =

⎡

⎣
0 0.5

0.0058 0.4
−0.0002 0.3

⎤

⎦

B4 =
⎡

⎣
0 0.0058 0 0

−0.0058 0 0.0058 0
−0.0002 0.0002 −0.0002 0

⎤

⎦

E1
4 =

⎡

⎣
−0.0058 0.5

0 0.4
0.0002 0.3

⎤

⎦

E2
1 = E2

2 = E2
3 = E2

4 =
⎡

⎣
0.3 0 1.7
0 0.6 0

0.2 0.0.5 0.06

⎤

⎦.

The effect of disturbances, noises, and linearizing errors are
considered to be bounded in the sets of ηk and ωi,2

k (i = 1,
2, 3, and 4) are given as V = {η : −[2 2 2]T × 10−3 ≤ η ≤
[2 2 2]T × 10−3} and W i,2 = {ωi,2 : −[2 2 2]T × 10−3 ≤
ωi,2 ≤ [2 2 2]T × 10−3}, respectively.

Four SUIOs are designed to monitor four motors, each
corresponding to one considered fault interval (i.e., f1, f2,
f3, and f4). If we consider a fault magnitude interval for each
actuator, it means that as long as the proposed FI conditions
are satisfied, any actuator fault magnitude in the interval can
be isolated by the proposed FI approach. The parameters of

Fig. 3. Evaluation of the second component of the residuals of the four
SUIOs (superindex indicates SUIO/the faulty mode). (a) Second component
of residual. (b) Detail of the second residual component.

the four SUIOs are designed as

N1 =
⎡

⎣
5.7257 6.7741 5.7676
−4.7021 −5.6668 −5.4171
−0.6817 −0.6970 0.3279

⎤

⎦

H 1 =
⎡

⎣
0.7502 −0.0123 0.4327
−0.0123 0.9994 0.0213
0.4327 0.0213 0.2504

⎤

⎦

T 1 =
⎡

⎣
0 0.0594 0.0061 −0.0655
0 −0.0735 −0.0076 0.0811
0 0.0339 0.0035 −0.0374

⎤

⎦

M1 =
⎡

⎣
0.7050 0.809 0.56

0.09 0.27 0.43
0.58 0.69 0.41

⎤

⎦

K 1
1 =

⎡

⎣
−1.9069 −2.0134 0.2479
1.4133 3.7500 −0.3910
0.5232 −1.8918 0.9533

⎤

⎦

K 1
2 =

⎡

⎣
1.2940 1.9833 0.8033
−0.8394 −3.7218 −0.5901
−0.8308 1.8767 −0.4264

⎤

⎦
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N2 =
⎡

⎣
−0.9789 −1.2320 −1.8896
1.1277 1.1467 1.2675
−1.0319 −0.8549 −0.3831

⎤

⎦

H 2 =
⎡

⎣
0.9995 −0.0134 0.0188
−0.0134 0.6622 0.4728
0.0188 0.4728 0.3384

⎤

⎦

T 2 =
⎡

⎣
−0.0075 0 0.0081 −0.0006
0.0005 0 −0.0006 0
0.0069 0 −0.0075 0.0006

⎤

⎦

M2 =
⎡

⎣
0.6 0.8 0.58
0.5 0.27 0.25
0.4 0.19 0.8

⎤

⎦

K 2
1 =

⎡

⎣
0.2296 −0.0856 0.0104
0.1005 −0.2476 −0.1269
0.1154 0.5933 0.5668

⎤

⎦

K 2
2 =

⎡

⎣
−0.2309 0.0544 0.0323
−0.1014 0.2253 0.1581
−0.1180 −0.6588 −0.47416

⎤

⎦

N3 =
⎡

⎣
−54.214 −52.1073 −92.2285
145.531 139.0987 245.3171
−51.654 −48.7388 −85.2332

⎤

⎦

H 3 =
⎡

⎣
0.7208 0.0127 0.4484
0.0127 0.9994 −0.0204
0.4484 −0.0204 0.2798

⎤

⎦

T 3 =
⎡

⎣
−0.0099 −0.1040 0 0.1140
0.0259 0.2714 0 −0.2973
−0.0087 −0.0911 0 0.0998

⎤

⎦

M3 =
⎡

⎣
0.5 0.6 1.2
1.3 0.8 0.9
1.5 0.7 0.4

⎤

⎦

K 3
1 =

⎡

⎣
41.909 24.371 25.74
−111.884 −65.187 −67.648

38.995 22.98 23.135

⎤

⎦

K 3
2 =

⎡

⎣
−42.052 −24.364 −25.494
111.787 65.191 67.759
−38.766 −22.994 −23.487

⎤

⎦

N4 =
⎡

⎣
0.9253 0.3544 0.8586
−0.7457 −0.3121 −0.8786
−0.1374 −0.5212 −0.6305

⎤

⎦

H 4 =
⎡

⎣
0.9995 0.0138 −0.0175
0.0138 0.6187 0.4855
−0.0175 0.4855 0.3818

⎤

⎦

T 4 =
⎡

⎣
0.0108 0.0008 −0.0116 0
−0.0065 −0.0005 0.007 0
0.0003 0 −0.0003 0

⎤

⎦

M4 =
⎡

⎣
0.3 0.5 0.4

0.12 0.56 0.89
0.45 0.36 0.8

⎤

⎦

K 4
1 =

⎡

⎣
−0.3668 −0.8526 0.4048
0.0207 0.5184 0.3019
0.4184 0.6066 −0.0876

⎤

⎦

K 4
2 =

⎡

⎣
0.3855 0.3366 0.2535
−0.0225 −0.4680 −0.3669
−0.4280 −0.3384 −0.2537

⎤

⎦ .

Fig. 4. Evaluation of the third component of the residuals of the four
SUIOs (superindex indicates SUIO/the faulty mode). (a) Third component
of residual. (b) Detail of the third residual component.

Based on the FI conditions in Proposition 10, a constant
input vector uconst = (200, 200, 200, 200)T is designed for
active FI. Using uconst, the residual sets of the SUIOs can be
constructed as in Fig. 1. Notice that, in Fig. 1, the first three
subplots, the second three subplots, the third three subplots,
and the fourth three subplots correspond to the first SUIO,
the second SUIO, the third SUIO, and the fourth SUIO,
respectively. Taking the first SUIO as an example, we can
see that R1 ∩ R̄1,2 = Ø, R1 ∩ R̄1,3 = Ø, and R1 ∩ R̄1,4 = Ø,
which implies R1 ∩ R̄1 = Ø. Furthermore, in the remaining
subplots, we can observe that R2 ∩ R̄2 = Ø, R3 ∩ R̄3 = Ø,
and R4 ∩ R̄4 = Ø. Thus, uconst can satisfy the FI conditions.
Note that each subplot in Fig. 1 describes one component of
the corresponding sets, and the notations Ri (l) and R̄i, j (l)
denote the lth component intervals of Ri and R̄i, j , respectively.
The meaning of Ri and R̄i, j can be understood according to
(22) and (23). Since all the intervals are 1-D, only the
horizonal axis of coordinate frame is used.

In this paper, we consider a fault scenario that, from k = 1
to k = 30, the system is healthy, but at k = 31, the first
actuator becomes faulty. The real-time fault magnitude set



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 9

in the simulation is f1 = 0.1 + 0.05rand, where rand is a
random value inside the interval [0, 1]. The simulation results
corresponding to this fault scenario are shown in Figs. 2–4.
It can be observed that a fault is detected at time instant k = 32
(i.e., r1

32(2) ∈ R1(2), r2
32(2) �∈ R2(2), r3

32(2) ∈ R3(2), and
r4

32(2) �∈ R4(2)). Thus, at time instant k = 32 (i.e., the FD
time), we directly adjust the system input to uconst (i.e., enter
into the phase of active FI). Furthermore, it can be concluded
that the first actuator has become faulty at k = 34 based on
the proposed active FI strategy in Fig. 4 (i.e., r1

34(3) ∈ R1(3),
r2

34(3) �∈ R2(3), r3
34(3) �∈ R3(3), and r4

34(3) �∈ R4(3), where
only the residual of the first SUIO is still inside its set while
the residuals generated by the other three SUIOs have gone
out of their sets), which show the effectiveness of the proposed
FDI method.

V. CONCLUSION

In this paper, a new robust FDI method combining UIOs
and invariant sets is proposed to detect and isolate actuator
faults based on a bank of SUIOs, where we consider faults
and disturbances as unknown inputs and divide them into two
groups. The first group includes unknown inputs that can be
actively decoupled by UIOs. For the second group, we use
their bounds to passively propagate their effect to the residual
sets. The advantage of the proposed method is that all the
SUIOs are used for FD. Moreover, it should be more sensitive
to faults than some existing set-theoretic methods that only
use the observer matching the current system situation. For
FI, the proposed method designs an input vector and uses
it to actively force the residual vectors of SUIOs to leave
their sets if they do not match the faulty mode, which can
guarantee FI and reduce FI conservatism. In the future, we will
consider multiple faults and implement SUIO-based fault-
tolerant control.
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